阿里云天池大赛2019——肺部CT多病种智能诊断是一项以医疗影像为对象的机器学习竞赛。此竞赛的核心目标是利用深度学习、图像处理等先进的技术手段来提升肺部疾病诊断的准确性与效率。参与者需要开发出能够精准识别和分类肺部CT图像中各种病变的算法模型,这对医疗健康领域具有重要价值。 在此次大赛中,参赛者需要处理的数据主要是肺部的CT扫描图像。CT扫描能够提供肺部组织的详细横截面图像,对于发现肿瘤、炎症、结核等病变具有重要作用。但由于肺部CT图像数据量巨大,且病变种类繁多,依靠传统的影像分析方法已无法满足现代医学的需求。因此,通过人工智能技术自动化分析和诊断肺部CT图像,可以大幅提高医疗效率,减轻医生的工作负担,并有可能发现医生通过肉眼难以识别的早期病变。 参赛代码_TianChi2019-lung-CT.zip是参赛者提交的作品压缩包,包含了解决问题所需的源代码、模型参数、训练脚本等。通过这些文件,参赛者能够展示他们的算法设计、模型训练过程以及最终的诊断效果。代码包的结构和内容反映了参赛者的工程能力、对机器学习框架的理解以及对医学影像处理的专业知识。 从文件名称列表中可以看出,本次竞赛的代码包名称为TianChi2019-lung-CT-master,这暗示了一个主干项目的概念。它表明参赛者可能构建了一个较为复杂的项目,其中包含多个模块或子项目,以便于协作开发和版本控制。Master通常指的是项目的主要分支,其他开发者可以基于这个分支继续开发或合并新的功能。 在医疗人工智能领域,此竞赛突显了计算机视觉和机器学习技术在诊断辅助系统中的应用潜力。这些技术不仅可以应用于肺部疾病,还可以拓展到其他器官的诊断,如乳腺癌筛查、皮肤病变分析等。人工智能正在逐步成为医疗行业不可或缺的辅助工具,而像这样的大赛则为技术的创新和发展提供了重要的平台。 医疗AI的发展不仅仅是技术层面的突破,还涉及到伦理、法律和数据隐私等多个层面。处理敏感的医疗数据时,确保数据的安全性和保护患者的隐私权是至关重要的。因此,此类大赛也会对参赛者的代码和数据处理提出一定的伦理要求。 此外,大赛的举行也促进了跨学科的合作,包括计算机科学家、医学专家、数据科学家等在内,他们共同合作以实现医疗AI的临床应用。这种跨学科的融合有助于创新思维的产生,使得人工智能技术在医疗健康领域的应用更加广泛和深入。 阿里云天池大赛2019——肺部CT多病种智能诊断不仅仅是技术竞技的舞台,更是人工智能与医疗领域结合的前沿探索。它不仅推动了技术的进步,也为医疗行业的未来发展提供了新的视角和可能性。
2025-05-29 19:18:43 26.04MB
1
如今,医学领域广泛采用图像处理方法来提高对某些异常的早期检测,例如乳腺癌、肺癌、脑癌等。 本文主要集中在从 X 射线图像、计算机断层扫描 (CT) 图像和 MRI 图像中分割肺癌肿瘤。 图像分割采用图像处理方法。 在预处理阶段使用均值和中值滤波器。 在图像分割阶段,使用Otsu的阈值和k-Means聚类分割方法对肺部图像进行分割并定位肿瘤。 为了评估用于分割的方法的性能,在两者的分割图像上计算性能评估参数,例如信噪比(SNR)、均方误差(MSE)和峰值信噪比(PSNR))。用于分割的不同分割方法。 无论图像如何,K-Means 分割都能获得更好的结果。
2023-03-13 00:28:58 673KB Lung Cancer Computed
1
official_classification.py : 使用了较多的sklearn中提供的聚类函数 self_classification.py : 使用了较多的手写聚类函数(手写高斯聚类由于计算高维矩阵n次方报错,就没有使用) 两者可以相互比较看手写函数效果如何。 model.py : 其中包含了kmeans,lvq,mixture-of-gaussian聚类函数,以及计算精度和NMI的手写函数,处理标签映射的匈牙利算法。 由于学习向量量化是依据ground truth的得到的一组原型向量,是有监督的学习,因此计算其精度没有意义,在函数里就没有计算精度和NMI,只打印出了原型向量 函数运行时会有warning,不用在意,手写的函数没有优化,速度较慢 代码对三个数据集,分别使用了kmeans,lvq,mixture-of-gaussian三个方法,在得到预测标签后,采用匈牙利算法对标签进行处理,计算其精确度acc和标准互信息nmi 这三种方法聚类的精度只有百分之五十几,在数据集yale中效果较差 运行方法: 安装相应需求的库,直接运行official_classifica
2022-11-30 03:22:26 6.04MB kmeans 支持向量量化 高斯聚类
1
慢性肺疾病 使用卷积神经网络对肺部疾病进行分类
2022-09-27 15:08:37 3.99MB
1
Lung Phantom Dataset 是肺部病变数据集,其基于美国食品和药品管理局制作的胸部模型,分别制作了 12 个不同大小的病变阴影(有效直径 10 和 20mm)、形状(球形、椭圆形、分叶状和毛刺状)和密度(-630、-10 和 +100 HU),并用哥伦比亚大学-医学中心的扫描仪进行扫描和记录。其中 CT 的扫描参数为 120 kVp、100 mAs、准直 64*0.625、间距 1.375mm,并使用 1.25mm 厚度切片作为肺核重建图像。 Lung Phantom Dataset 由癌症影像档案 TCIA 于 2015 年发布,相关论文有《Data From Lung_Phantom:The Cancer Imaging Archive》。
2022-07-13 11:05:01 64.64MB 数据集
使用OpenCV和CNN进行图像分割 使用OpenCV(和深度学习)进行图像分割
1
存在严重病变时在CT中自动进行肺分割 该软件包提供了用于肺分割的训练有素的U-net模型。 目前,有四个模型可用: U-net(R231):该模型在覆盖范围广泛的视觉变异性的庞大而多样的数据集上进行了训练。 该模型对单个切片进行分割,分别提取左,右肺,气袋,肿瘤和积液。 气管将不包括在肺分割中。 U-net(LTRCLobes):该模型是在数据集的子集上训练的。 该模型对单个肺叶进行分割,但是当存在密集的病理或每个切片都不可见裂痕时,其性能有限。 U-net(LTRCLobes_R231):这将运行R231和LTRCLobes模型并融合结果。 来自LTRCLobe的假阴性将由R231预测填充,并映射到邻居标签。 LTRCLobe的误报将被删除。 融合过程的计算量很大,视数据和结果而定,每卷可能要花费几分钟。 两种模型的应用实例。 左: U-net(R231),将区分左肺和右肺,并包括非常密集的区域,例如积液(第三排),肿瘤或严重纤维化(第四排)。 右: U-net(LTRLobes)将区分肺叶,但不包括非常密集的区域。 LTRCLobes_R231将融合LTRCLobe和R2
1
随机森林图像matlab代码使用CNN的肺癌亚型分类 入门 演示版 random_forest.ipynb 包含什么 癌症亚型分类管道的Python源代码 MATLAB源代码,用于从3D原始图像生成2D联合直方图 二维关节直方图(.csv)的肺癌数据集 可视化每一步的检测管线 在自己的数据集上进行训练的示例 依存关系 Python 3.4 TensorFlow 1.3 凯拉斯2.0.8 用法 结果 接触 查看我的学士论文:基于多模态CT的2D联合直方图的肺癌亚型深度学习分类器,以获取有关此工作的更多详细信息。
2022-04-22 10:11:41 2.3MB 系统开源
1
使用Python检测肺癌 数据集 癌症影像档案库(TCIA) 代码文件 代码以模块化方式编写 PredictCancer.py:用于测试图像的最终程序 NeuralNetwork.py:使用SKlearn的MLP学习功能并使用pickle保存权重 LungCancerTrain.py:所有用于模型训练的图像处理技术和代码均在此处编写 Dataset_create.py:用于创建正例和负例的文件夹并以所需格式命名图像 两种类别的测试用例图像,并连同其终端输出一起添加到存储库中,以供参考 依存关系 Python3,OpenCV-cv2,泡菜,数据文件库 输出 正面案例 否定情况 这项工作是与我的朋友Tarun Bhargav Sriram合作完成的,该项目是数字图像处理选修课的一个项目。 有关项目的任何疑问,请联系
2022-04-03 21:07:30 5KB Python
1
这是包含肺腺癌单细胞数据集分析的存储库 入门 克隆 repo 从下面的链接下载 Data_input 文件夹到 repo: ://drive.google.com/drive/folders/1sDzO0WOD4rnGC7QfTKwdcQTx3L36PFwX?usp=sharing 脚本 导入和创建 Seurat 对象 01_Import_data_and_metadata.Rmd :导入原始数据和元数据。 此 scipt 的输出保存为"S01_Data_and_metadata.RData" 。 02_Create_Seurat_object.Rmd :从脚本 01 导入 .RData 对象。创建初始 Seurat 对象并执行初始质量控制。 最终输出对象保存为"S02_Main_Seurat_object_filtered.RData" 。 02.1_Create_Seurat_o
2021-12-18 23:09:30 34.59MB HTML
1