2021-域自适应-医学图像分析 综述译文
2022-09-22 09:08:26 38KB 域适应 医学图像 综述
1
存在严重病变时在CT中自动进行肺分割 该软件包提供了用于肺分割的训练有素的U-net模型。 目前,有四个模型可用: U-net(R231):该模型在覆盖范围广泛的视觉变异性的庞大而多样的数据集上进行了训练。 该模型对单个切片进行分割,分别提取左,右肺,气袋,肿瘤和积液。 气管将不包括在肺分割中。 U-net(LTRCLobes):该模型是在数据集的子集上训练的。 该模型对单个肺叶进行分割,但是当存在密集的病理或每个切片都不可见裂痕时,其性能有限。 U-net(LTRCLobes_R231):这将运行R231和LTRCLobes模型并融合结果。 来自LTRCLobe的假阴性将由R231预测填充,并映射到邻居标签。 LTRCLobe的误报将被删除。 融合过程的计算量很大,视数据和结果而定,每卷可能要花费几分钟。 两种模型的应用实例。 左: U-net(R231),将区分左肺和右肺,并包括非常密集的区域,例如积液(第三排),肿瘤或严重纤维化(第四排)。 右: U-net(LTRLobes)将区分肺叶,但不包括非常密集的区域。 LTRCLobes_R231将融合LTRCLobe和R2
1
LAPS - 左房压医疗影像分析系统 项目目录结构设计思路 LAPS Database 用以存放所有 应用程序中运行的数据的 文件 Docs 用以存放所有 文档 文件 Preinstall 用以存放所有 预装 文件以及相应的添加路径脚本文件 PyUI 用以存放所有的 使用Designer设计出来的.ui文件 编译而来的.py 界面文件 使用的方法是用的external tool的中的 PYUIC PyUI-test 用以存放所有的 使用Designer设计出来的.ui文件 编译而来的.py 界面文件,与PYUI文件夹存放的文件不同的是其中的文件是可直接执行的版本,用以测试使用。 使用的方法是用的external tool的中的 PYUIC-X Resource 用以存放所有的资源文件 Images 用以存放所有的 图像资源 文件 Sounds 用以存放所有的 音频资源 文件 Qss 用以存
2021-10-31 21:29:18 85.97MB Python
1
组织病理学检测 创建了一种算法,以识别从较大的数字病理扫描中获取的小图像斑块中的转移癌。 该比赛的数据是对PatchCamelyon(PCam)基准数据集的略微修改版本 动机 乳腺癌的临床诊断最好通过活检来实现。 病理学家通过在显微镜下手动检查组织切片来进行诊断。 但是,传统的诊断系统需要专业知识,只有经验丰富的病理学家才能准确地确定肿瘤组织。 当前,在印度的各个农村地区,人们无法获得良好的医疗保健设施。 另外,农村地区没有新的先进设备,因此甚至有可能无法正确诊断患者。 农村地区医疗状况不佳的主要原因之一是缺乏经验丰富的医生。 数据集 该研究使用的数据集是PatchCamelyon(PCam)[21],[22]的略微修改版本。由于其概率抽样,原始PCam数据集包含重复图像,但是此版本不包含重复图像。 该数据集是开源的,可以从( )下载。 数据集包含超过220K张RGB图像,尺寸为96x
1
医学图像分析中的深度学习研究综述
2021-08-09 16:46:39 1.96MB 医疗图像分析
1
Going Deep in Medical Image Analysis:Concepts, Methods, Challenges and Future Directions --深入医学图像分析:概念,方法,挑战和未来方向;此文章2019年发表于Computer Vision and Pattern Recognition期刊,讲解了深度学习各框架在医疗图像各领域的应用与挑战,对各个网络结构进行了大量的分析,非常好的一片文章。本人进行了翻译,可进行中英文对照阅读。
1