mamba是一个用于管理Python环境的包管理工具,类似于conda,但相较于conda有更快的安装速度和更优的性能。它广泛应用于数据科学、机器学习等领域,特别是当用户需要处理大型数据集和复杂模型时。torch环境指的是PyTorch环境,PyTorch是由Facebook开发的一个开源机器学习库,广泛用于计算机视觉和自然语言处理等领域。 mamba与torch环境的结合,让用户可以方便地管理和维护PyTorch及其相关依赖包的安装和更新,确保了不同项目的依赖环境互不干扰。通过mamba可以创建独立的环境,每个环境都可以安装特定版本的PyTorch和其他库,这样可以避免因版本冲突而导致的问题。 本次提供的压缩包文件包含了PyTorch、torchvision和torchaudio的whl文件,这些文件分别对应于不同版本的PyTorch核心库、视觉处理模块和音频处理模块。这些库都支持CUDA架构,这意味着它们可以利用NVIDIA GPU的计算能力来进行加速计算,尤其是在深度学习训练和推断中。 文件名中的“cu118”表示这些库支持CUDA 11.8版本,这对于拥有相应GPU硬件的用户而言十分重要,因为只有正确匹配CUDA版本才能确保GPU加速功能得以利用。而“cp310-cp310”表明这些库是为Python 3.10版本设计的,确保了与当前流行Python版本的兼容性。文件扩展名“.whl”是Python Wheel的缩写,表示这是一个预编译的Python分发包,安装时比传统的`.tar.gz`格式更加快捷和简单。 此外,文件名中的“torch-2.3.1+cu118-cp310-cp310-linux_x86_64.whl”、“torchvision-0.18.1+cu118-cp310-cp310-linux_x86_64.whl”和“torchaudio-2.3.1+cu118-cp310-cp310-linux_x86_64.whl”分别表示这些是PyTorch核心库、视觉处理模块和音频处理模块的安装包。安装这些包之后,用户可以在Python环境中使用PyTorch进行机器学习模型的训练和推理,使用torchvision进行图像和视频的处理,以及使用torchaudio处理音频数据。 通过这样的安装方式,开发者可以快速构建出一个具有高度兼容性和高性能的深度学习开发环境,从而专注于模型的开发和创新,而不必担心环境配置的问题。这对于科研人员、数据科学家、机器学习工程师等群体来说,无疑提高了工作效率,加速了开发进程。 无论如何,使用mamba安装PyTorch及其相关模块时,都应该遵循官方的安装指南,并确保所选择的版本与系统环境以及项目需求相匹配。特别是在使用特定版本CUDA的GPU时,应该下载与之对应的CUDA版本的PyTorch包,以确保最佳性能。此外,由于深度学习领域发展迅速,库的版本更新频繁,保持环境的更新和维护也是使用过程中不容忽视的环节。
2025-04-08 15:04:45 805.67MB torch cuda torchvision
1
Jetson Nano部署yolov8或11【致命三连坑】 1.JetPack4.6自带的Python3.6根本跑不动YOLOv11(最低得python3.8) 2.CUDA10.2根本找不到对应PyTorch版本 3.自己编译环境各种报错,opencv/numpy版本连环冲突 【救命锦囊】 编译了适配JetPack4.6的: Python3.8环境 CUDA10.2专属PyTorch1.11 完整依赖项的whl安装包 (终于不用自己配环境配到哭) 随着人工智能技术的不断发展,边缘计算和智能视觉应用越来越受到重视。NVIDIA Jetson Nano作为一款面向边缘计算的微型计算机,因其出色的性价比和性能,被广泛应用于小规模的人工智能项目中。在这些项目中,实时目标检测算法的部署尤为关键,YOLO(You Only Look Once)作为一种流行的目标检测算法,其最新版本yolov8和yolov11在性能和速度上都有显著提升,但部署这些高版本YOLO到Jetson Nano上面临着诸多挑战。 Jetson Nano出厂预装的JetPack4.6版本自带Python3.6,而YOLOv11至少需要Python3.8版本才能顺利运行。这意味着用户需要升级系统自带的Python环境,以确保兼容性和性能。CUDA10.2版本在官方渠道难以找到与其适配的PyTorch版本,这对于需要深度学习支持的YOLO来说是一个大问题。手动编译环境时会遇到各种依赖项冲突,尤其是opencv和numpy等关键库的版本不兼容问题,这会大大增加部署的复杂度和失败的风险。 为了解决这些难题,开发者精心编译了一套适配JetPack4.6的软件包。这个软件包包括了Python3.8环境,专门为CUDA10.2适配的PyTorch1.11版本,以及所有必需依赖项的预编译whl安装包。通过这种方式,开发者确保了环境的一致性和稳定性,大大降低了用户在部署YOLOv8或YOLOv11时的技术门槛。 有了这套预编译的whl包,开发者和用户可以更加快速和便捷地在Jetson Nano上部署YOLO,享受GPU加速带来的实时目标检测的便利。这对于希望在边缘设备上部署高性能AI应用的开发者而言,无疑是一个巨大的福音。 这个资源包对于希望在NVIDIA Jetson Nano上部署最新版YOLO的开发者来说,提供了一个简化的解决方案。它不仅解决了版本不兼容的头疼问题,还极大地提升了部署效率和成功率,使得在边缘计算设备上实现高效的实时目标检测成为可能。
2025-03-31 18:11:50 200.33MB JetsonNano PyTorch
1
torch和torchvision版本树莓派python3.7专用
2024-05-04 14:59:20 75.79MB torch
1
今天小编就为大家分享一篇Pytoch之torchvision.transforms图像变换实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2024-03-13 15:21:45 39KB Pytoch torchvision transforms
1
opencv_torchvision_transform 这是基于Opencv的torchvision“ transforms”的重写。 所有功能仅取决于cv2和pytorch(无PIL)。 如,cv2比PIL快三倍。 转换中的大多数函数都被重新实现,除了: 在原始版本中已弃用的ToPILImage(我们使用过的opencv :)),Scale和RandomSizedCrop将被忽略。 原始的仿射变换只有5个自由度,我实现了一个具有6个自由度的仿射变换,称为RandomAffine6 (可以在找到)。 原始方法RandomAffine仍然保留,并使用opencv重新实现。 我的旋转功能是顺时针旋转,但是原始功能是逆时针旋转。 添加了一些新的方法,这些方法可以在“支持”中找到(粗体显示)。 opencv版本的所有输出与原始输出几乎相同(在测试) 。 支持: Compose
2024-02-02 17:57:27 99KB opencv pillow pytorch torchvision
1
torchvision-0.5.0-cp37-cp37m-win_amd64.whl ,windows10+python3.7+cpu+conda
2023-02-27 19:09:48 1.17MB torchvision
1
jetson nano torch1.7.0 torchvision 0.8.0
2022-11-14 18:34:58 250.72MB jetpack
1
torchvision-0.10.0+cu111-cp38-cp38-linux_x86_64.whl
2022-11-04 20:34:54 22.11MB
1
jetson nx等开发板上torch和torchvision的完美解决方案(基于ubuntu18.04,cuda10.2,python3.6,aarch64)
2022-10-29 17:05:04 327.47MB ubuntu jetson 视觉 torch
1
网上找了好久的,不想自己编译的可以直接用
2022-10-19 21:05:32 315.99MB jetsonnano
1