标题“Kaggle_disaster_tweets”表明这是一个与Kaggle竞赛相关的项目,主要涉及的是对灾难相关推文的分析。Kaggle是一个知名的平台,它提供了数据科学竞赛、数据集和社区,允许数据科学家和机器学习专家进行实践并解决实际问题。 在本项目中,描述虽然简洁,但我们可以推断其内容可能包括对Twitter上有关灾害事件的推文进行收集、处理、分析和建模。这样的数据集通常用于训练文本分类模型,以识别出哪些推文与灾害或紧急情况相关,这对于灾害响应和危机管理至关重要。 标签“JupyterNotebook”意味着项目采用了Jupyter Notebook这一交互式环境进行数据分析和展示。Jupyter Notebook是数据科学领域广泛使用的工具,它支持Python、R等多语言,可以方便地混合代码、文本、图表和图像,为项目提供清晰的报告形式。 压缩包中的文件名“Kaggle_disaster_tweets-master”很可能包含了一个完整的项目结构,如数据集、预处理脚本、模型训练代码、结果可视化和可能的报告文档。"master"通常表示这是项目的主分支或最终版本。 在该项目中,可能会涉及到以下IT知识点: 1. **数据预处理**:包括清理推文文本(移除URL、特殊字符、停用词等)、标准化文本(转换为小写、词干提取)、处理缺失值以及创建有用的特征(如情感词汇、词频、n-grams)。 2. **文本挖掘**:通过自然语言处理(NLP)技术来理解推文内容,如使用词性标注、命名实体识别(NER)来识别地点、人物和组织名。 3. **机器学习模型**:可能使用了监督学习方法,如朴素贝叶斯、支持向量机(SVM)、随机森林或深度学习模型(如卷积神经网络CNN或长短时记忆LSTM)来分类推文。 4. **模型评估**:应用准确率、精确率、召回率、F1分数等指标评估模型性能,并可能使用交叉验证进行模型选择和调优。 5. **特征工程**:创建新的特征,如情感得分、推文长度、提及次数、表情符号计数等,这些特征可能对模型的预测能力有显著影响。 6. **可视化**:使用matplotlib、seaborn或plotly库创建图表,如混淆矩阵、ROC曲线、特征重要性等,帮助理解模型表现和数据分布。 7. **数据集处理**:可能使用pandas库加载和操作数据,包括数据清洗、过滤、合并和切片。 8. **版本控制**:项目使用Git进行版本控制,"master"分支代表项目的主要或最终状态。 9. **Python编程**:整个项目基于Python语言,利用numpy、pandas、scikit-learn、nltk、spacy等库进行数据分析和建模。 10. **数据分析流程**:遵循数据科学的CRISP-DM(Cross Industry Standard Process for Data Mining)或KDD(Knowledge Discovery in Databases)流程,包括业务理解、数据理解、数据准备、建模、评估和部署等阶段。 通过这个项目,学习者可以深入了解如何利用现代数据科学技术处理文本数据,以及如何构建和优化分类模型以应对实际问题。同时,这也是一个实践NLP、机器学习和数据可视化技能的理想案例。
2025-04-20 17:48:00 9KB JupyterNotebook
1
tweets twitter.csv
2024-05-08 08:52:52 81.15MB 数据集
1
提交Kaggle竞赛“真实与否?NLP与灾难鸣叫”(排名前25%) 挑战链接: : 链接到公共Kaggle笔记本(SVM): : 在此存储库中,您将找到3个笔记本: 一种使用spaCy字向量和SVM的 一种使用BiLSTM的 一种将预训练的BERT用于序列分类 在测试集上,SVM的f1得分达到0.81152,BiLSTM达到0.80,而BERT达到〜0.83 f1得分。
2023-03-20 16:46:11 990KB nlp svm binaryclassification JupyterNotebook
1
Kaggle_Disaster_Tweets 带有灾难性推文的自然语言处理:预测哪些推文与真实灾难有关,哪些不与真实灾难有关任务开始日期:2021.04.04 任务说明:使用火车数据中的信息,构建模型以预测某条推文是否与真实灾害有关 火车数据集说明: 列 描述 有效/缺失 遗失率 'ID ' 每条推文的唯一标识符(推文编号) 7613/0 0% '关键词' 推文中的特定关键字 7552/61 1% '地点' 发推文的位置 5080/2533 33% '文本' 推文的文字 7613/0 0% '目标' 这条推文是否是一场真正的灾难(标签) 7613/0 0% 测试数据集说明: 列 描述 有效/缺失 遗失率 'ID ' 每条推文的唯一标识符(推文编号) 7613/0 0% '关键词' 推文中的特定关键字 3237/26 1% '地点' 发
2023-02-04 19:10:35 2KB Python
1
两个没有ML知识的家伙开始创建一个神经网络来进行Twitter情绪分析。 :D 如何使用: 将情感分析数据集提取到“ full_data”(或任何您想要的数据) 运行“ python3 split_data.py full_data 1000”,将训练数据分成随机的1000条不良tweets和1000条良好tweets。 运行'python3 ffn_twitter.py'。 当前,您必须对文件名进行硬编码。
2022-10-20 10:53:14 56.11MB twitter tweets sentiment-analysis neural-network
1
Twitter爬虫 从Twitter抓取推文 产品特点 刮旧推文 按用户名抓取 刮擦顶级推文
2022-03-30 00:02:13 7KB python scraper twitter tweets
1
Word2Vec_Twitter 关于 该存储库使用代码和, 。 此zip包含在Twitter数据上训练的word2vec模型,如以下所述: 戈丁,F.,Vandersmissen,B.,De Neve,W.,&Van de Walle,R.(2015)。 多媒体实验室@ ACL W-NUT NER共享任务:使用分布式单词表示法为Twitter微博命名实体识别。 Anos用户生成的文本研讨会,ACL 2015。 免责声明 如果使用该模型,请引用本文。 该zip包含2个其他文件,可使用Python读取word2vec模型。 用于此目的的代码是从Gensim库中提取的,可以在以下位置找到:
2022-03-23 15:01:54 18KB machine-learning twitter word2vec word2vec-model
1
介绍 TweetScraper可以从获得推文。 它基于构建,无需使用 。 爬网的数据不如API所获得的那么干净,但是好处是您可以摆脱API的速率限制和限制。 理想情况下,您可以从Twitter搜索获取所有数据。 警告:请保持礼貌,并遵守。 安装 安装conda ,您可以从获得它。 经过测试的python版本是3.7 。 安装Seleniumpython绑定: : 。 (注意: KeyError: 'driver'是由错误的设置引起的) 对于ubuntu或debian用户,运行: $ bash install.sh $ conda activate tweetscraper $ sc
2022-02-04 11:13:53 15KB twitter tweets scrapy twitter-search
1
Sentiment_analysis_twitter 总览 分析表情符号在改善情感分析结果中的作用。 使用Twitter StreamAPI收集Twitter数据,并使用TF-IDF对推文进行矢量化处理。 使用矩阵创建一个正向和负向矢量,并使用余弦相似度来确定给定推文为正或负的程度。 通过转换unicode将Emoji表情合并到推文中,并重复该过程。 将过程分类提高了15%。 动机 了解人类的情感和理智向来是我的痴迷。 借助我的数据科学技能,我想了解人们如何在社交网络上表达情感,也就是情感分析。 作为一个狂热的Twitter用户,我知道限制少于140个字符如何迫使人们进行创新,以及表情符号如何
2021-10-30 10:41:59 34.11MB emoji nlp machine-learning tweets
1