AI City track 5数据集-voc-xml格式,这是一个特定应用于AI城市环境中的数据集,专门用于计算机视觉任务,特别是对象识别和图像标注。它包含736张图像,这些图像都是与城市交通环境密切相关的场景,其中标注了三种主要类别:戴头盔的人、未戴头盔的人以及摩托车。该数据集对于研究城市交通安全监控、人群行为分析、以及自动驾驶车辆视觉系统的开发等应用领域具有重要意义。 数据集中的所有图像都采用了PASCAL VOC(Visual Object Classes)格式的XML文件来标注,这种格式是图像识别和计算机视觉领域内广泛接受和使用的一种标注方式。每张图像对应一个XML文件,详细记录了图像中每个对象的位置、类别以及其他可能的属性信息。这样的数据集可以为机器学习算法提供训练样本,帮助模型识别图像中的对象,理解城市环境中的视觉信息。 数据集的构建是基于真实的城市交通场景,覆盖了各种天气、光照和复杂背景,这有助于训练出鲁棒性更强、泛化能力更高的模型。对于戴头盔和未戴头盔的人的区分,可能与交通规则的遵守以及安全意识的检测相关,这对于分析和提升城市交通安全具有潜在的应用价值。摩托车作为城市中常见的交通工具,其存在与否,以及是否正确使用安全装备,都是城市交通管理者关注的焦点。 数据集的发布,标志着对城市交通安全管理工具研究的深化。借助这样的数据集,研究人员可以开发更为高效的图像识别算法,用以实时监控城市交通环境,提升城市管理的智能化水平,减少交通事故发生的概率。例如,通过监控系统自动识别未戴头盔的摩托车驾驶人,可以即时预警或者采取干预措施,从而有效减少因交通事故造成的伤亡。 此外,该数据集的出现也可能促进相关软件开发工具和框架的发展,方便研究人员在城市交通监控、安全分析等领域快速部署和测试他们的模型。随着计算机视觉技术的进步,使用这类数据集训练出的模型将能够更好地服务于城市交通的智能化管理,为建设更加安全和谐的城市交通环境贡献力量。 AI City track 5数据集-voc-xml格式是一个针对城市交通安全监控特别设计的数据集,它集合了丰富的场景信息和精确的视觉标注,为推动城市交通管理的智能化、自动化提供了有力的数据支持,具有重要的研究和应用价值。
2025-06-14 18:58:22 82.16MB
1
车站异常行为检测数据集是为了解决在车站场景下,如何利用计算机视觉技术自动识别和检测异常行为的问题。此类研究在提升车站安全管理、预防犯罪行为、以及提升公共安全方面具有重要的应用价值。本数据集采用Pascal VOC格式和YOLO格式结合的方式,为研究者和开发者提供了2293张图片及其对应的标注信息,涵盖了包括正常行为在内的4个类别。 VOC格式通常指的是Pascal Visual Object Classes格式,这是一种广泛应用于目标检测和分类任务的标注格式,其包括图片、标注文件(XML格式)和分类文件等,每个标注文件详细记录了每个目标的位置和类别信息。而YOLO(You Only Look Once)格式的标注文件通常是txt文本文件,以特定格式记录了目标的类别和边界框坐标信息,适合YOLO模型的训练使用。 在本数据集中,包含了4个主要的标注类别,分别是“斗殴”、“损毁财物”、“摔倒”和“正常”。这些类别是车站异常行为检测中最常见的几类行为,具有很高的代表性。每个类别都通过矩形框的形式进行标注,矩形框内即为目标区域。例如,“斗殴”类别下标注了794个矩形框,表示数据集中共有794张图片包含了斗殴行为。 标注工具选择了labelImg,这是一个流行的图像标注工具,支持矩形框标注,非常适合本数据集的需求。标注过程中,工作人员会仔细分析图片内容,识别出不同类别的行为,并用矩形框准确地标出这些行为的位置。 在总计5216个标注框中,不同类别的框数存在差异,其中“摔倒”类别的框数最多,达到1334个,显示出数据集中摔倒这一行为出现的频率较高,可能是因为车站人流密集,摔倒的风险相对较大。而“损毁财物”类别的框数最少,只有86个,可能是因为这类行为本身发生的频率较低,或者是因为其在监控视频中不易被捕捉到。 值得注意的是,本数据集提供的仅仅是经过准确标注的图片数据,不包含任何用于模型训练的权重文件,也不对使用该数据集训练得到的模型或权重文件精度作出任何保证。这是因为在机器学习和深度学习中,模型的表现不仅仅取决于数据集的质量,还与模型的架构、训练过程、超参数设置等因素有关。 此外,数据集还提供了一部分图片的预览和标注例子,便于研究者和开发者直观了解数据集的质量和标注风格。数据集的提供者鼓励用户在使用数据集时遵守相关法律法规,尊重数据隐私和版权,合理合法地利用数据集进行研究和开发活动。
2025-06-13 10:34:02 1.02MB 数据集
1
在显微镜下观察生物世界时,我们经常能够发现一些微小而迷人的生命体,其中浮游藻类就是一群丰富多彩、形态多变的生物。这些微小的藻类生物对环境变化极为敏感,它们的种类和数量往往能够反映其所在水域的健康状况。因此,对浮游藻类进行精确识别和监测变得尤为重要。 近年来,随着机器学习和深度学习技术的飞速发展,基于计算机视觉的自动化检测技术开始被广泛应用于浮游藻类的识别和分类中。在这些技术中,卷积神经网络(CNN)及其衍生技术,如YOLO(You Only Look Once)算法,已经成为实现快速准确检测的重要工具。YOLO算法以其实时性、准确性的特点,在许多快速目标检测任务中得到了应用。 然而,任何高级的机器学习模型都需要大量的标注数据进行训练。因此,一个高质量、大规模、标注精细的数据集对于训练高效准确的检测模型至关重要。本次提供的数据集正是为了满足这一需求而生的。 该数据集名为“显微镜下浮游藻类生物检测数据集”,包含16239张图片,每张图片都经过了精确的手工标注,包括对应的VOC格式xml文件和YOLO格式txt文件。VOC格式广泛应用于物体检测与分割任务中,而YOLO格式则更适用于需要快速检测的应用场景。数据集中的每张图片都附有详细的标注信息,标注包括了80种不同类型的浮游藻类,例如Achnanthidium、Adlafia、Amphora、Anabaena、Aphanizomenon、Aulacoseira等。 此外,数据集中的每一类浮游藻类都标注了相应的框数,例如Achnanthidium框数为443,Adlafia框数为63,这样详尽的信息对于机器学习模型的训练尤为重要。通过这些标注,模型能够在训练阶段学习识别不同类型的浮游藻类,并在实际应用中快速准确地检测出相应的种类。 值得注意的是,该数据集采取的Pascal VOC格式和YOLO格式,为研究者提供了两种不同的数据标注方式,这不仅为不同的研究需求提供了便利,而且也提高了数据的可用性和灵活性。例如,VOC格式中包含的xml文件详细记录了对象的位置和类别,而YOLO格式的txt文件则以简洁的方式记录了物体的中心点坐标、宽度和高度等信息。 该数据集的发布无疑将大大推动浮游藻类生物检测技术的发展,帮助环境科学家和生物学家更加高效地进行水域生物的监测工作,同时也为相关领域的研究者提供了一个强有力的学习和研究工具。
2025-06-05 19:48:07 964KB 数据集
1
【目标检测】绝地求生中游戏人物检测数据集9043张YOLO+VOC格式.docx
2025-06-04 12:42:00 6.07MB 数据集
1
石榴病害检测数据集VOC+YOLO格式2356张4类别.docx
2025-06-04 09:36:44 2.43MB 数据集
1
在信息技术迅猛发展的今天,机器学习和人工智能的深入应用已经成为推动各个行业进步的重要力量。其中,计算机视觉作为人工智能的一个重要分支,在图像识别、目标检测等领域展现出了巨大的潜力和应用价值。X光安检技术作为保障公共安全的重要手段,其背后的数据集处理和算法优化尤为关键。OPIXray数据集的出现,为这一领域的研究和应用提供了宝贵资源。 OPIXray数据集原本可能是一个包含X光安检图像的数据集,这些图像涵盖了各种物品在经过X光扫描后的图像信息。由于X光图像具有独特的特征和识别难点,例如穿透力强导致的图像重叠和特征模糊等,因此需要特定的算法来进行有效的目标检测和识别。 将OPIXray数据集转换为VOC格式,意味着这些数据集已经按照Pascal VOC格式进行了结构化处理。Pascal VOC是计算机视觉领域广泛使用的一种图像标注和数据集格式,它包含了图像文件、相应的标注文件以及用于训练和测试的图像信息。通过这种格式化,可以方便地运用各种机器学习框架和工具进行进一步的处理和分析,这对于目标检测模型的训练至关重要。 而VOC格式到YOLO格式的转换,则是将数据集适配于YOLO(You Only Look Once)这一流行的实时目标检测系统。YOLO因其速度快、准确率高而广泛应用于安防监控、自动驾驶等需要快速准确目标检测的场合。YOLO将目标检测视为一个回归问题,直接在图像上预测边界框和类别概率,与其他检测方法相比,YOLO模型在保证准确度的同时大幅提高了检测的速度。 因此,OPIXray数据集的VOC到YOLO格式转换工作,实际上为相关研究者和开发者提供了一个便捷的途径,使他们可以直接利用现有的YOLO模型和算法对X光安检图像进行目标检测,从而提高检测系统的性能和可靠性。这项转换不仅有助于提升现有技术的效率,也为未来技术的优化和创新奠定了基础。 与此同时,随着深度学习技术的不断进步,对数据集的要求也越来越高。数据集的质量、多样性和标注准确性直接影响了机器学习模型的性能。因此,OPIXray数据集在经过转换和优化后,可以更好地服务于深度学习模型的训练,帮助相关算法更好地学习到X光图像中的特征表示,进而提高目标检测的准确率和可靠性。 值得注意的是,在使用这些数据集进行研究和开发时,还应当注意保护个人隐私和数据安全。由于X光安检图像可能涉及敏感信息,研究和应用时必须遵循相应的法律法规,确保个人信息不被泄露,防止数据被滥用。 OPIXray数据集的VOC格式转换为YOLO格式,不仅为X光安检领域的研究者提供了一个高效便捷的工具,也为这一领域的技术进步和应用拓展奠定了坚实的基础。随着未来技术的进一步发展,我们有理由相信,X光安检技术将在保障公共安全方面发挥更加重要的作用。
2025-05-27 17:36:21 326.05MB 目标检测数据集
1
样本图:blog.csdn.net/2403_88102872/article/details/144168985 文件太大放服务器下载,请务必到电脑端资源详情查看然后下载 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):1794 标注数量(xml文件个数):1794 标注数量(txt文件个数):1794 标注类别数:12 标注类别名称:["Anticarsia_gemmatalis","Coccinellidae","Diabrotica_speciosa","Edessa_meditabunda","Euschistus_heros_adulto","Euschistus_heros_ninfa","Gastropoda","Lagria_villosa","Nezara_viridula_adulto","Nezara_viridula_ninfa","Rhammatocerus_schistocercoides","Spodoptera_al
2025-05-22 11:25:19 407B 数据集
1
标签类别:names: ['bubble', 'petrol'] 资源文件内包含:资源图片数据集,YOLO格式的标注文件,data.yaml是数据集配置文件。 训练集和验证集已经完成划分!!! 道路油污识别是城市交通管理和环境保护中的重要任务。油污不仅影响道路的清洁度和美观度,还可能对车辆行驶安全构成威胁。然而,传统的油污检测方法主要依赖人工视觉检查,这种方法不仅耗时、成本高,而且结果的准确性和可重复性差。因此,开发一种自动化、智能化的油污识别系统显得尤为重要。 使用方法: 下载YOLO项目,在data目录下创建子文件夹:Annotations、images、imageSets、labels,将VOC格式的XML文件手动导入到Annotations文件夹中,将JPG格式的图像数据导入到images文件夹中。
2025-05-16 15:52:01 13.97MB 数据集 目标检测 深度学习 YOLO
1
[数据集][目标检测]抽烟检测数据集VOC+YOLO格式22559张2类别.docx
2025-05-16 10:57:40 3.96MB 数据集
1
样本图:blog.csdn.net/2403_88102872/article/details/144149641 文件太大放服务器下载,请务必到电脑端资源详情查看然后下载 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):4195 标注数量(xml文件个数):4195 标注数量(txt文件个数):4195 标注类别数:1 标注类别名称:["damaged"] 每个类别标注的框数: damaged 框数 = 8357 总框数:8357 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注
2025-05-07 14:32:56 407B 数据集
1