内容概要:本文详细介绍了基于模型预测控制(MPC)的平行泊车系统的设计与实现。首先,通过定义车辆的关键参数(如轴距、车宽、最小转弯半径等),确定了车辆所需的最小车位尺寸。接着,根据不同起始区域,系统自动生成相应的路径策略,包括单次移动路径、双次移动路径以及紧急调整路径。路径生成过程中应用了贝塞尔曲线和平滑多项式拟合等数学工具。核心部分是MPC控制器的设计,通过构建滚动优化问题,实现了对车辆路径的有效跟踪。最后,通过Simulink搭建了运动学模型并进行了仿真验证,结果显示横向误差不超过5cm,航向角偏差控制在3度以内。 适合人群:从事自动驾驶、智能交通系统研究的专业人士,特别是对路径规划和控制算法感兴趣的工程师和技术研究人员。 使用场景及目标:适用于研究和开发自动泊车系统的企业和个人开发者。目标是提高车辆在复杂环境下的自主泊车能力,特别是在狭小车位内的精确停放。 其他说明:文中提到了一些具体的MATLAB/Simulink代码片段,有助于读者理解和复现实验结果。同时指出了实际应用中可能遇到的问题,如计算量较大、低速工况下的模型偏差等,并给出了相应的解决方案。
2025-05-14 14:45:19 336KB
1
强化学习DDPG算法在Simulink与MATLAB中的实现与应用:自适应PID与模型预测控制融合的新尝试,基于强化学习DDPG算法的自适应控制及机械臂轨迹跟踪优化研究,强化学习算法,DDPG算法,在simulink或MATLAB中编写强化学习算法,基于强化学习的自适应pid,基于强化学习的模型预测控制算法,基于RL的MPC,Reinforcement learning工具箱,具体例子的编程。 根据需求进行算法定制: 1.强化学习DDPG与控制算法MPC,鲁棒控制,PID,ADRC的结合。 2.基于强化学习DDPG的机械臂轨迹跟踪控制。 3.基于强化学习的自适应控制等。 4.基于强化学习的倒立摆控制。 ,核心关键词: 强化学习算法; DDPG算法; Simulink或MATLAB编写; MPC; 自适应PID; 模型预测控制算法; RL工具箱; 结合控制算法; 鲁棒控制; 轨迹跟踪控制; 机械臂; 倒立摆控制。,强化学习在控制系统中的应用与实现:从DDPG到MPC及PID鲁棒自适应控制
2025-05-12 15:32:12 1.78MB
1
内容概要:本文详细介绍了基于Simulink平台实现无人船非线性模型预测控制(NMPC)的方法和技术要点。主要内容涵盖船体动力学方程的建立、预测控制器的设计、权重矩阵的配置、输入约束的处理以及各种调试技巧。文中强调了NMPC相较于传统控制方法的优势,特别是在处理非线性和复杂约束条件方面的能力。同时,作者分享了许多实际应用中的经验和优化建议,如通过调整权重矩阵改善轨迹跟踪性能、利用松弛变量处理障碍物规避等问题。 适合人群:从事无人船研究、自动化控制领域的研究人员和工程师,尤其是对非线性模型预测控制感兴趣的读者。 使用场景及目标:适用于需要精确控制无人船轨迹的应用场合,如海洋测绘、环境监测等。主要目标是提高无人船在复杂海况下的轨迹跟踪精度和稳定性。 其他说明:文章提供了丰富的实战经验,包括如何解决常见的仿真问题(如控制量抖振)、如何选择合适的采样时间和预测时域等。此外,还提到了一些创新性的解决方案,如采用平滑过渡的tanh函数处理舵角约束,以及引入松弛变量来应对障碍物规避等挑战。
2025-05-09 16:01:42 434KB
1
### 基于GPS的新型太阳光全自动跟踪控制系统设计 #### 概述 在现代绿色能源技术中,太阳光照明系统作为一种可持续发展的解决方案,日益受到关注。然而,要充分利用太阳光资源,解决的关键问题是如何实时精确地跟踪太阳位置。本文探讨的是一种基于全球定位系统(GPS)的太阳光全自动跟踪控制系统设计,旨在克服传统方法中的不足,如精度低、控制复杂等。 #### GPS在太阳光跟踪系统中的应用 传统的太阳定位技术包括光电二极管和实时时钟(RTC)芯片两种方式,但这些方法存在精度不高或累积误差增大的问题。相比之下,基于GPS的太阳光跟踪系统提供了一个更为精确且稳定的解决方案。GPS接收器能够获取观测点的经纬度和当前时间,结合Atmega168单片机的处理能力,计算出太阳在特定时刻的高度角和方位角,进而控制步进电机调整云台角度,实现太阳光的精准跟踪。 #### 系统设计与功能 本系统的核心在于其高精度的跟踪机制。Atmega168单片机作为中央处理器,负责解析GPS数据,执行复杂的数学运算以确定太阳位置,并向步进电机发送指令。步进电机根据接收到的信息,精确调整云台的角度,确保太阳光始终被高效捕捉。此外,系统还配备有角位置探测器,用于系统校准,确保跟踪精度达到0.5度,显著提升了太阳光能的收集效率。 #### 技术优势与创新点 1. **高精度跟踪**:通过GPS和Atmega168单片机的协同工作,系统能够实现对太阳光的高精度跟踪,显著优于传统方法。 2. **稳定可靠**:GPS的数据提供了稳定的时间和地理位置信息,避免了RTC芯片累积误差的问题,确保了长期运行的准确性。 3. **智能化控制**:系统通过角位置探测器自动校准,减少了人工干预的需求,提升了系统的自动化程度和易用性。 4. **环保节能**:太阳光照明系统取代了电力照明,大幅降低了能源消耗,符合绿色健康、节能环保的发展理念。 #### 结论 基于GPS的新型太阳光全自动跟踪控制系统的开发,标志着太阳能利用技术的重大进步。它不仅解决了太阳光定位的关键问题,还提高了太阳光能的收集效率和利用精度。这一创新设计将为太阳能照明领域带来革命性的变化,促进绿色能源技术的普及和应用,对环境保护和可持续发展具有重要意义。 该系统的设计充分展示了现代科技与可再生能源的完美结合,为未来的太阳光利用开辟了新的路径,预示着一个更加绿色、智能的能源未来。
2025-05-09 15:20:39 356KB gps
1
针对机械臂运动轨迹控制中存在的跟踪精度不高的问题,采用了一种基于EC-RBF神经网络的模型参考自适应控制方案对机械臂进行模型辨识与轨迹跟踪控制。该方案采用了两个RBF神经网络,运用EC-RBF学习算法,采用离线与在线相结合的方法来训练神经网络,一个用来实现对机械臂进行模型辨识,一个用来实现对机械臂轨迹跟踪控制。对二自由度机械臂进行仿真,结果表明,使用该控制方案对机械臂进行轨迹跟踪控制具有较高的控制精度,且因采用EC-RBF学习算法使网络具有更快的训练速度,从而使得控制过程较迅速。
2025-05-07 20:14:03 609KB 论文研究
1
UR5机械臂作为一款工业机器人,其在自动化领域中扮演着极为重要的角色。六自由度机械臂的设计赋予了UR5高灵活性和精准的操作能力,使其能够在工业生产中执行复杂任务。PID(比例-积分-微分)控制是一种常见的反馈控制机制,通过调整控制参数以减小误差,达到系统期望的性能,对于机械臂轨迹跟踪控制尤为重要。 为了实现精确的轨迹跟踪,机械臂控制系统需要建立准确的数学模型。在此过程中,DH参数表(Denavit-Hartenberg参数)提供了一种系统化的方法来描述机器人连杆和关节之间的关系,它定义了连杆的长度、扭转角度、偏移量等参数,使得能够以数学的方式对机械臂的运动进行描述和仿真。 坐标系表示是机器人运动学分析中的基础,通过定义不同的坐标系来表示机械臂上每个关节的位置和姿态,这对于建立机械臂运动模型至关重要。三维模型则是对机械臂结构的直观展现,它不仅能够帮助工程师理解机械臂的各个组成部分,而且对于进行物理仿真和机械设计优化也起着关键作用。 在机械臂的控制系统中,能够导出角度、角速度、角加速度以及力矩等数据,这些数据对于分析机械臂在执行任务时的动态性能和预测其行为至关重要。通过这些数据,工程师可以对机械臂进行性能评估,调整PID控制参数,以提高跟踪精度和稳定性。 误差曲线图是评估机械臂控制系统性能的重要工具。通过分析误差曲线,工程师可以直观地看到机械臂执行任务过程中的跟踪误差变化情况。根据误差曲线的形状和大小,可以对控制算法进行调整和优化,以实现更高的控制精度。 本文档提供的文件名称列表显示,除了六自由度机械臂的技术分析和介绍外,还包括了机械臂的三维模型文件、DH参数表以及相关的仿真分析报告。这些文件为实现UR5机械臂的精确控制提供了必要的理论和实践基础。 UR5六自由度机械臂的PID轨迹跟踪控制涉及多个领域的知识,包括机器人运动学、控制理论、三维建模以及仿真技术等。通过对这些领域知识的综合运用,可以实现对UR5机械臂的精确控制,使其在工业自动化生产中发挥更大的作用。
2025-04-29 20:16:12 151KB sass
1
针对船舶存在模型不确定项与未知环境干扰的轨迹跟踪控制问题,将动态面控制技术、自适应神经网络、滑模控制算法与backstepping设计方法相结合,并设计一种基于神经网络的船舶轨迹跟踪自适应滑模控制律;
2025-04-29 10:49:59 471KB 轨迹跟踪 滑模控制
1
RBF神经网络自适应控制程序详解及Simulink仿真实践:带注释模型文件与结果供学习参考,RBF神经网络自适应控制程序详解及Simulink仿真实践:带注释的第一个模型程序解析,RBF神经网络自适应控制程序及simulink仿真 第一个模型程序带注释,注意共两个文件,供学习用,没有说明文档 直接仿真,介意勿拿 只有程序、模型和结果,供学习用 ,RBF神经网络;自适应控制程序;Simulink仿真;模型程序注释;两个文件;学习用;仿真结果,RBF神经网络控制程序及Simulink仿真模型学习资源
2025-04-26 16:06:00 7.44MB csrf
1
RBF(径向基函数)神经网络自适应控制是一种基于RBF神经网络的控制方法,旨在解决复杂系统中的控制问题,尤其是当系统的数学模型不确定或难以建立时。RBF神经网络通过使用径向基函数作为激活函数,能够对输入数据进行有效的映射,进而学习系统的动态特性并实现自适应控制。 在自适应控制中,RBF神经网络通常用于在线学习系统的动态特性,并调整控制器的参数。该方法的基本步骤包括: 1. **网络结构**:RBF神经网络由输入层、隐藏层和输出层组成。隐藏层使用径向基函数(如高斯函数)作为激活函数,能够对输入信号进行非线性映射。输出层通常用于输出控制信号。 2. **训练过程**:通过系统的实际输入和输出,RBF网络在线调整权重和基函数的参数,以使网络输出与目标控制信号相匹配。自适应控制的核心是根据误差调整网络参数,使得系统的控制性能逐步优化。 3. **自适应调整**:RBF神经网络能够实时调整网络参数,适应环境的变化或模型的不确定性。通过反馈机制,系统能够根据当前误差自动调整控制策略,提高控制系统的鲁棒性和精度。
2025-04-26 15:49:31 66KB 自适应控制 RBF神经网络 数学建模
1
直流电机双闭环调速系统仿真模型:附参数计算与PI参数整定教程,实现无静差跟踪控制,直流电机双闭环调速系统仿真模型:附带参数计算与PI参数整定教程,实现无静差跟踪控制,直流电机双闭环调速系统仿真模型 1.附带仿真模型参数计算配套文档 2.附带转速外环、电流内环PI参数整定配套文档 功能:双闭环采用转速外环、电流内环,其中PI参数在报告里面有详细的整定教程,可以实现无静差跟踪 ,直流电机双闭环调速系统仿真模型;参数计算;PI参数整定;无静差跟踪,直流电机双闭环调速系统仿真模型:附参整定文档及PI参数无静差跟踪教学
2025-04-21 21:20:09 1.72MB edge
1