使用5000张公开的apple数据集进行训练,包括训练完成的权重文件(.pt)和训练数据。
2025-05-15 16:16:27 26.09MB 数据集
1
内容概要:yolov5火焰识别模型完整项目,采用C/S结构。项目分为前端代码,用vue编写;后端代码,用python编写,做成api接口。灵活性大,与模型解耦合,后续可以放自己训练好的模型,不再修改代码或者少量修改代码。 源代码:yolov5模型部署到web端,文档齐全,包含如何安装环境,如何运行项目,如何使用。 适合人群:学生、具备一定编程基础,工作1-3年的研发人员、想入门人工智能的爱好者、科研人员 能学到什么:可以快速出效果。 阅读建议:详情请查看文章介绍:https://blog.csdn.net/qq122716072/article/details/125503254
2025-05-13 05:25:43 12.96MB vue.js python yolov5 yolo
1
YOLOv5与DeepSORT是两个在计算机视觉领域广泛应用的算法,主要负责目标检测和多目标跟踪。在本文中,我们将深入探讨这两个技术以及如何将它们结合用于汽车和行人的多目标跟踪,这对于智能交通系统、自动驾驶车辆以及安全监控等领域具有重要意义。 **YOLOv5详解** YOLO(You Only Look Once)是一种实时的目标检测系统,以其高效和准确而著称。YOLOv5是该系列的最新版本,由Joseph Redmon等人开发,经过多次迭代优化,性能更加强大。它采用了一种单阶段的检测方法,直接从输入图像中预测边界框和类别概率,大大减少了计算时间。YOLOv5引入了以下关键改进: 1. **数据增强**:使用HFlip、Resize、ColorJitter等技术,增强了模型的泛化能力。 2. **模型结构**:采用了更高效的neck设计,如Path Aggregation Network (PANet) 和 Fused Scale金字塔,提高特征融合和多尺度信息利用。 3. **损失函数**:优化了损失函数,如CIoU(Complete IoU),改进了边界框的预测精度。 4. **权重初始化**:使用更好的预训练模型,如COCO数据集,加速收敛。 **DeepSORT详解** DeepSORT是一种基于卡尔曼滤波器和匈牙利算法的多目标跟踪框架。它结合了深度学习模型(如ReID)来估计目标的外观特征,并利用这些特征进行跨帧匹配。其核心组件包括: 1. **特征提取**:通过一个预训练的深度网络(如ResNet或MobileNet)提取目标的外观特征。 2. **卡尔曼滤波**:对目标的运动状态进行预测和更新,以处理目标的短暂遮挡和运动模糊。 3. **相似度度量**:使用马氏距离计算不同帧间目标特征的相似性。 4. **匈牙利算法**:解决分配问题,确定最佳的一一对应关系,确保跟踪的稳定性。 **YOLOv5与DeepSORT结合** 将YOLOv5和DeepSORT结合,可以实现端到端的汽车行人多目标跟踪。YOLOv5首先检测出每一帧中的目标,然后DeepSORT负责在连续帧之间进行目标跟踪。具体流程如下: 1. **目标检测**:YOLOv5模型在输入图像上进行前向传播,输出每个目标的边界框、类别和置信度。 2. **特征提取**:DeepSORT从YOLOv5的输出中提取目标的特征表示。 3. **跟踪初始化**:使用卡尔曼滤波器预测上一帧的目标状态,并为新检测到的目标分配ID。 4. **匹配过程**:根据马氏距离计算当前帧与上一帧目标特征的相似度,使用匈牙利算法进行匹配。 5. **状态更新**:更新匹配成功的目标状态,对未匹配的目标创建新的跟踪。 6. **重复步骤2-5**:对于视频的每一帧,重复以上过程,实现持续的目标跟踪。 这种结合方法在实际应用中表现出了优秀的跟踪性能,尤其在目标密集、遮挡频繁的场景下,能够有效地维持目标的连续性,实现精确的计数和追踪。 总结来说,YOLOv5和DeepSORT的结合为汽车行人多目标跟踪提供了一个强大且实用的解决方案,不仅适用于学术研究,也在实际项目如毕设、课设中大有裨益。通过理解并掌握这两个算法的工作原理和结合方式,开发者可以构建出高效的目标跟踪系统,满足各种复杂场景的需求。
2025-05-12 10:53:24 245.04MB 目标跟踪
1
本数据集共包含照片5932张,共分为四类:Bacterialblight(白叶枯病)1584张,Blast(枯萎病、稻瘟病)1440张,Brownspot(褐斑病)1600张,Tungro(水稻东格鲁病)1308张。其中训练集(train):共4948张 ;测试集(val):共984张。 所有照片标签(.txt)均已手动标注,可直接放入YOLOV模型进行训练使用 整个项目地址:https://download.csdn.net/download/qq_63630507/89861781 近年来,随着深度学习技术的快速发展,目标检测算法在农业领域中识别作物病虫害的应用成为研究热点。在此背景下,一套精确的、标注完备的数据集对于训练高效的模型至关重要。本数据集针对水稻病虫害的识别问题,提供了丰富的训练和测试资源,旨在通过深度学习方法,特别是YOLOv5模型,提高水稻病虫害的检测精度和效率。 数据集详细分类为四类水稻病虫害问题,包括白叶枯病、枯萎病(稻瘟病)、褐斑病和水稻东格鲁病。每一种病虫害均有相应的高清图像进行记录,图片数量分别为1584张、1440张、1600张和1308张,总计5932张。这些图片涵盖了多种不同的农田环境和病虫害的外观形态,为模型提供了丰富的训练场景。 数据集被分为训练集和测试集两部分,其中训练集共4948张图片,用于模型的训练过程;测试集共984张图片,用于模型性能的验证和评估。通过这样的数据划分,研究者可以有效地测试模型在未知数据上的泛化能力。 所有图片都已经进行了详细的标注工作,对应的标签文件(.txt格式)已生成,这为直接利用YOLOv5模型进行训练提供了便利。标签文件中的信息严格对应图片中的目标,详细标注了水稻病虫害的位置和类别信息,确保了训练数据的质量和准确性。 数据集的共享方式为通过网络下载,提供了方便快捷的获取途径。整个项目的地址公布在互联网上,研究者可以根据提供的链接下载到完整的数据集,开始相关的模型开发和应用研究工作。 在人工智能与农业结合的领域,这类数据集的出现对于提高作物病虫害的监测能力具有重要意义。基于YOLOv5模型的水稻病虫害目标检测数据集不仅可以应用于学术研究,也可以在实际农业生产中得到应用,帮助农民及时发现病虫害,采取相应的防治措施,提高水稻的产量和质量。 数据集的构建基于大量的实地拍摄和收集工作,反映出当前农业信息化和智能化的发展趋势。利用先进的计算机视觉技术,配合深度学习算法,可以极大地提高病虫害检测的效率和精确度,减少人工检测的成本和时间,对实现智慧农业具有积极作用。随着技术的不断进步,未来在农业领域中将会有更多的应用场景被开发出来,进一步推动农业现代化的进程。同时,该数据集的成功构建和应用也将激励更多的人工智能技术和方法被引入到农业病虫害检测和管理中,以科技的力量促进农业生产的可持续发展。
2025-05-09 15:44:29 196.24MB 目标检测 数据集 yolov
1
本项目通过CPU共训练50轮,精度趋近于0.8。若想进一步提高精度,可增加数据集或增加训练轮数。 数据集地址:https://download.csdn.net/download/qq_63630507/89844778 在当前的智能化农业发展中,运用先进的图像识别和深度学习技术对农作物病虫害进行自动检测与诊断已经变得尤为重要。本项目聚焦于水稻病虫害的自动识别,采用的是目前较为先进的目标检测模型Yolov5Yolov5作为一种基于深度学习的单阶段目标检测算法,以其运行速度快,检测精度高的特点,广泛应用于实时目标检测任务中。通过本项目的实施,旨在构建一个高精度的水稻病虫害智能识别系统。 在项目实施过程中,研究团队首先需要准备一个全面且高质量的水稻病虫害图像数据集。该数据集包含不同种类的水稻病害和虫害的图片,每张图片都应经过详细的标注,标注信息包括病虫害的类别及位置等,这为模型提供了训练的基础。通过数据集的准备,研究团队确保了模型训练有足够的信息去学习和识别各种病虫害特征。 考虑到计算资源和时间成本,项目选择了在CPU环境下进行模型训练,共计训练了50轮。尽管在计算能力有限的情况下,但通过精心设计的网络结构和合理的参数调整,模型的精度已经趋近于0.8,这是一个相对较高的准确率,表明模型在识别水稻病虫害方面已经具备了较好的性能。然而,项目报告也指出,若要追求更高的精度,可以考虑增加更多的数据集或延长训练轮数,以此来进一步提升模型的泛化能力和准确度。 项目最终构建的模型不仅能够帮助农民及时发现和处理病虫害问题,降低经济损失,还可以作为智能农业系统的一部分,实现对大规模种植区域的病虫害自动监测与预警。通过引入人工智能技术,不仅能够减轻农业工作者的负担,还能够提高作物的产量和品质。 在技术推广与应用方面,项目组还提供了数据集下载链接,便于更多的研究者和开发者获取和使用这些数据,共同推动智能农业识别技术的发展。这种开放共享的态度,有助于促进整个行业技术进步和农业生产的现代化。 本项目的实施是智能农业领域的一次重要尝试,它不仅推动了机器学习在农业领域的应用,更为水稻病虫害的精准识别提供了有效的方法和工具。通过本项目的成功实施,为未来利用智能化技术解决农业问题提供了新的视角和途径,具有重要的现实意义和深远的影响力。
2025-05-09 09:49:51 328.98MB 机器学习 Yolo 人工智能
1
基于RK3588上部署yolov5s模型源码(实时摄像头检测)高分项目,含有代码注释,新手也可看懂,个人手打98分项目,导师非常认可的高分项目,毕业设计、期末大作业和课程设计高分必看,下载下来,简单部署,就可以使用。该项目可以直接作为毕设、期末大作业使用,代码都在里面,系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值,项目都经过严格调试,确保可以运行! 基于RK3588上部署yolov5s模型源码(实时摄像头检测)高分项目基于RK3588上部署yolov5s模型源码(实时摄像头检测)高分项目基于RK3588上部署yolov5s模型源码(实时摄像头检测)高分项目基于RK3588上部署yolov5s模型源码(实时摄像头检测)高分项目基于RK3588上部署yolov5s模型源码(实时摄像头检测)高分项目基于RK3588上部署yolov5s模型源码(实时摄像头检测)高分项目基于RK3588上部署yolov5s模型源码(实时摄像头检测)高分项目基于RK3588上部署yolov5s模型源码(实时摄像头检测)高分项目基于RK3588上部署yolov5s模型源码(实时摄
2025-05-06 09:51:19 7.35MB 源码 yolov5 毕业设计 期末大作业
1
在本文中,我们将深入探讨如何使用Python编程语言结合YOLOv5和DeepSORT算法来实现一个高效、准确的人流量计数系统。这个系统在Windows 10操作系统上得到了成功的运行,并且包含了用户界面的注册登录设计,使得系统更加人性化和易用。 YOLOv5是一种基于深度学习的目标检测模型,全称为"You Only Look Once",它的主要任务是识别图像中的各个对象并将其框出。YOLOv5以其快速的检测速度和较高的准确性而备受推崇,尤其适合实时应用,如监控视频中的人流量计数。在本项目中,YOLOv5被用来检测视频帧中的人体目标。 DeepSORT则是一个跟踪算法,它结合了卡尔曼滤波器(Kalman Filter)和匈牙利算法(Hungarian Algorithm)来解决目标跟踪问题。DeepSORT利用了神经网络提取的特征,使得即使在目标暂时遮挡或离开视线后,也能重新识别并恢复跟踪。在人流量计数场景中,DeepSORT确保了个体在视频中的连续性,避免了因人移动和重叠导致的计数错误。 为了实现这个系统,首先你需要安装所有必要的依赖库。在`requirement.txt`文件中列出的应该包括但不限于`torch`(用于运行YOLOv5模型)、`opencv-python`(处理视频和图像)、`numpy`(数值计算)、`matplotlib`(可视化)以及可能的UI框架,如`tkinter`或`PyQt`。确保按照文件指示正确安装这些库,因为它们是程序运行的关键。 在代码中,关键部分包括: 1. **预处理**:加载YOLOv5模型,并对输入视频进行预处理,例如调整大小、归一化等,以适应模型的输入要求。 2. **目标检测**:使用YOLOv5模型对每一帧进行处理,获取到边界框信息,即每个人的位置和大小。 3. **特征提取**:对于每一个检测到的目标,使用DeepSORT算法提取特征,这通常涉及到模型的中间层输出。 4. **目标跟踪**:基于特征相似度,DeepSORT算法将新检测到的目标与之前帧中的目标匹配,形成连续的轨迹。 5. **计数逻辑**:通过跟踪的结果,我们可以计算进入和离开视野的人数,从而得到每帧的人流量。 6. **界面设计**:创建一个用户界面,包含登录注册功能,展示视频流和实时计数结果。用户可以登录系统,查看历史数据或导出统计报告。 此外,考虑到Windows 10环境,你可能还需要处理跨平台兼容性问题,确保所有的库和依赖项都能在该操作系统上正常工作。在实际部署时,可能需要优化性能,比如利用多线程或者GPU加速。 这个项目结合了先进的目标检测和跟踪技术,为实时人流量计数提供了一种有效的解决方案。通过理解YOLOv5和DeepSORT的工作原理,以及如何将它们集成到Python环境中,你可以开发出自己的智能监控系统,应用于各种场景,如商场、车站等公共场所的安全管理和人流分析。
2025-05-04 21:25:33 101.65MB python opencv yolov5 deepsort
1
VOC2007数据集是计算机视觉领域中一个广泛使用的图像识别和对象检测的数据集,全称为PASCAL Visual Object Classes Challenge 2007。这个数据集由英国剑桥大学计算机实验室创建,旨在推动多类物体检测算法的研究。VOC2007包含了20个不同的类别,如人、自行车、狗、飞机等,涵盖了日常生活中的多种常见对象。 YOLO(You Only Look Once)是一种实时目标检测系统,以其高效和准确的性能在计算机视觉领域广受欢迎。YOLOv1在2016年首次提出,随后出现了YOLOv2、YOLOv3、YOLOv4和YOLOv5等多个版本,每个新版本都在速度和精度上有所改进。YOLO的核心思想是将图像分割为网格,并预测每个网格内的物体类别和边界框。 本压缩包提供的VOC2007数据集已经转换为YOLO格式,这意味着它已经被整理好,可以直接用于训练YOLO模型,无需额外的数据预处理步骤。数据集被划分为三个部分:训练集(2501个样本)、验证集(2510个样本)和测试集(4952个样本)。这种划分有助于模型的训练和验证,确保模型的泛化能力。 "labels"文件夹中包含了与图像对应的标注文件,这些文件通常以.txt格式存储,每行代表图像中一个对象的信息,包括该对象在图像中的边界框坐标(用相对比例表示)以及对应的类别标签。例如,“0.1 0.2 0.5 0.6 person”表示图像中有一个“person”类别的对象,其左上角坐标为(0.1, 0.2),右下角坐标为(0.5, 0.6)。 "images"文件夹则包含实际的图像文件,这些图像用于训练和评估YOLO模型。每个图像文件名通常与其对应的标注文件名相同,这样可以方便地将图像和其标注信息对应起来。 使用此数据集训练YOLO模型时,首先需要配置YOLO的训练脚本,指定训练集、验证集和标签文件的位置。然后,选择合适的超参数,比如学习率、批大小、迭代次数等。训练过程中,可以定期在验证集上进行验证,观察模型性能的提升。训练完成后,使用测试集评估模型的最终性能,通常使用指标如平均精度(mAP)来衡量。 对于YOLOv5,可以利用其提供的工具包进行数据预处理、训练和评估。例如,使用`yaml`配置文件定义数据路径和训练参数,运行`train.py`进行训练,使用`evaluate.py`进行测试。此外,YOLOv5还支持数据增强,如随机翻转、裁剪和色彩扰动,以提高模型的泛化能力。 这个VOC2007数据集的YOLO格式版本是一个非常有价值的资源,可以帮助研究人员和开发者快速进行物体检测模型的训练和优化,特别是对于那些希望使用YOLO系列模型的用户。通过利用这个数据集,我们可以深入研究和比较不同YOLO版本的性能,或者开发新的目标检测技术。
2025-05-01 18:56:57 338.2MB 数据集 VOC2007 yolo yolov5
1
yolov5 ******************************************************************************************************* 这是一个可以在RK3588上运行的yolov5-demo项目,项目自带有量化后的官方模型可以进行测试使用。
2025-04-30 11:23:24 124.04MB yolov5
1
YOLOv5疲劳驾驶数据集详解》 在智能交通系统和自动驾驶领域,疲劳驾驶检测是一项重要的技术,它能够及时预警驾驶员的疲劳状态,降低交通事故的风险。本文将深入解析一个基于YOLOv5的疲劳驾驶数据集,该数据集包含了丰富的图像信息,旨在帮助开发者训练出准确的疲劳驾驶检测模型。 我们要理解的是YOLOv5,这是一种实时目标检测的深度学习框架,全称为"Yolo You Only Look Once",以其快速、精确和易于使用的特点在计算机视觉领域广泛应用。YOLOv5采用了改进的网络结构,提高了目标检测的速度和精度,尤其适合处理像疲劳驾驶检测这类实时性要求高的任务。 本数据集的核心在于其提供的图像和对应的标签信息。数据集被划分为两个部分,训练集(train)和验证集(val),比例为8:2,总共包含2914张图片。这样的划分方式遵循了深度学习模型训练的常规做法,训练集用于训练模型,验证集则用于在训练过程中评估模型性能,防止过拟合。 数据集中的类别包括四种:closed_eye、closed_mouth、open_eye和open_mouth。这些类别代表了驾驶员面部的不同状态,反映出其可能的疲劳程度。例如,“closed_eye”表示驾驶员眼睛闭合,可能是打哈欠或者睡眠状态;“closed_mouth”可能是疲倦时下意识的口部动作;而“open_eye”和“open_mouth”则可能是正常清醒的状态。通过识别这些特征,模型可以判断驾驶员的疲劳状况。 标签信息是以txt格式提供的,这种格式简洁且易于处理。每个txt文件对应一张图片,其中包含了图片中所有目标对象的坐标和类别信息。例如,一条记录可能形如:“class_id x_min y_min x_max y_max”,这表示了目标物体在图像中的位置以及属于哪个类别。开发者可以利用这些信息来训练YOLOv5模型,使其学习如何准确地定位并识别疲劳驾驶的各种迹象。 在训练过程中,可以使用YOLOv5框架提供的工具进行数据预处理,如图像增强,以增加模型的泛化能力。同时,利用损失函数和优化算法(如Adam)调整模型参数,以最小化预测框与真实边界框之间的差距。在训练完成后,通过验证集评估模型性能,如果达到预期效果,可以进一步在测试集上进行测试,以确保模型在实际应用中的有效性。 这个疲劳驾驶数据集是训练YOLOv5模型进行疲劳驾驶检测的理想资源。通过对不同面部状态的精确识别,我们可以构建出能够实时监测驾驶员疲劳状态的系统,从而提升道路安全。开发者应充分利用这个数据集,结合YOLOv5的强大功能,开发出高效、可靠的疲劳驾驶检测解决方案。
2025-04-29 17:52:05 254.96MB 数据集
1