本资源实现了一个完整的 上位机-STM32-FPGA 多节点协同控制系统,通过UART串口通信协议驱动舵机。系统支持多节点指令转发、动态参数配置与实时状态回传,用户可通过上位机发送指令,经STM32解析后转发至FPGA生成高精度PWM信号,实现舵机角度控制,同时支持数据回环校验与状态监控。
2025-04-12 23:49:36 38.19MB stm32 FPGA UART 舵机驱动
1
PC端通过串口调试助手发送给异步串口接收模块UART_rx.v,完成串并解析后通过wire [7:0] pi_data ;wire pi_flag ;送入同步串口(SSI)发送模块usart_master.v。考虑到同步串口(SSI) 波特率是10Mbps,远大于异步串口波特率是115200bps,因此无需做数据缓存。同步串口参数如表1-1所示,异步串口参数如表1-2所示。开发工具Vivado 2018.3,使用Verilog HDL编写,FPGA器件xc7a100tfgg484。 在现代电子通信系统中,数据传输的接口标准多种多样,而异步串口(UART)和同步串口(SSI)是两种常见的串行通信接口。基于FPGA的RS422异步串口转二线同步串口(SSI)的接口转换工程,是一种利用现场可编程门阵列(FPGA)技术,将低速异步串口通信转换为高速同步串口通信的解决方案。通过这样的转换,可以实现不同通信标准之间的数据互通,对于提升设备的兼容性和扩展性具有重要意义。 在该工程中,使用了Verilog硬件描述语言来编写转换逻辑。Verilog是一种广泛应用于电子系统设计的硬件描述语言,它允许设计者通过文本形式描述数字电路的结构和行为,进而通过EDA工具实现电路设计的仿真和综合。工程中涉及到的关键Verilog文件包括UART接收模块 UART_rx.v 和SSI发送模块 usart_master.v。UART_rx.v 负责接收来自PC端通过串口调试助手发送的异步串口数据,进行串并转换,然后将数据通过特定的信号线pi_data和pi_flag发送给SSI发送模块。SSI发送模块则负责将这些数据通过同步串口发送出去。 在设计中,SSI接口被配置为高速模式,其波特率为10Mbps,而UART接口的波特率为115200bps。由于SSI接口的波特率远大于UART接口,因此在本设计中无需额外的数据缓存。这种速率差异的处理是通过硬件设计中的时序控制和数据流管理来实现的,确保在不丢失数据的前提下,实现快速而稳定的通信。 此外,整个工程是基于Xilinx的Vivado 2018.3开发环境进行开发的,使用的是FPGA器件xc7a100tfgg484。Vivado是一款功能强大的FPGA设计套件,它提供了从设计输入到设备配置的一整套解决方案,能够支持高层次的综合、仿真、时序分析、以及硬件配置等多个环节。xc7a100tfgg484则是Xilinx公司生产的一款Artix-7系列的FPGA器件,具有丰富的逻辑资源和I/O端口,适用于多种应用场景。 在该工程的设计文档中,通常会包括两个接口的参数说明表。表1-1中会详细描述SSI同步串口的工作参数,如波特率、数据位宽、停止位、校验位等,这些参数需要与外部设备的SSI接口参数相匹配。表1-2则会介绍UART异步串口的参数,包括传输速率、帧格式、流控等,这些参数需要与PC端的串口调试助手设置一致。通过这样的参数配置,可以确保数据能够在UART和SSI之间准确无误地传输。 整个工程的实现不仅展示了FPGA在接口转换方面的灵活性和高效性,还体现了在高速和低速通信系统之间进行数据交换时对精确时序控制的需求。此类型项目不仅对于通信系统设计者具有参考价值,对于深入理解FPGA在通信协议转换中的应用也十分有益。
2025-04-10 10:45:08 2.3MB FPGA verilog
1
基于ZYNQ的FPGA数据DMA传输至以太网教学框架:高效实现数据采集与千兆网传输,适用于工程师与在校学生。,基于zynq的以太网传输工程教学。 内容:这是一个框架 将fpga获得的数据通过dma存入ddr 再从处理器端将数据从ddr读取并通过千兆网传输给电脑 意义:作为一个开发框架 继续这个框架可以半天就能实现数据采集功能 对于基于adc或者dac项目的验证开发非常高效 缩短开发周期 今后类似项目全部可以复用 重新开发工作量小于20% 适合人群:模拟半导体芯片的测试或应用工程师、FPGA ZYNQ需要的嵌入式工程师或者在校学生老师 FPGA工程 + vitis rtos 工程 + 工程说明文档 ,基于zynq;以太网传输;数据采集;fpga开发;zynq应用;框架复用。,基于Zynq的FPGA以太网传输教学框架:快速实现数据采集与复用开发
2025-04-07 19:52:45 136KB
1
STM32 HAL 库实现乒乓缓存加空闲中断的串口 DMA 收发机制 STM32 HAL 库实现乒乓缓存加空闲中断的串口 DMA 收发机制,轻松跑上 2M 波特率。 STM32 中一般的 DMA 传输方向有内存->内存、外设->内存、内存->外设。通用异步收发传输器(Universal Asynchronous Receiver/Transmitter,UART),在嵌入式开发中一般称为串口,通常用于中、低速通信场景,波特率低有 6400 bps,高能达到 4~5 Mbps。 在 STM32 中使用 DMA 收发数据,可以节约可观的 CPU 处理时间。特别是在高速、大数据量的场景中,DMA 是必须的,而双缓冲区、空闲中断以及 FIFO 数据缓冲区也是非常重要的成分。 在本文中,我们将使用 STM32CubeMX 配置串口,首先使能高速外部时钟,然后设置时钟树。接下来配置串口,选择一个串口,设置模式为 Asynchronous,设置波特率、帧长度、奇偶校验以及停止位长度。然后添加接收和发送的 DMA 配置,注意在 RX 中将 DMA 模式改为 Circular,这样 DMA 接收只用开启一次,缓冲区满后 DMA 会自动重置到缓冲区起始位置,不再需要每次接收完成后重新开启 DMA。 在串口收到数据之后,DMA 会逐字节搬运到 RX_Buf 中。当搬运到一定的数量时,就会产生中断(空闲中断、半满中断、全满中断),程序会进入回调函数以处理数据。全满中断和半满中断都很好理解,就是串口 DMA 的缓冲区填充了一半和填满时产生的中断。而空闲中断是串口在上一帧数据接收完成之后在一个字节的时间内没有接收到数据时产生的中断,即总线进入了空闲状态。 现在网络上大部分教程都使用了全满中断加空闲中断的方式来接收数据,不过这存在了一定的风险:DMA 可以独立于 CPU 传输数据,这意味着 CPU 和 DMA 有可能同时访问缓冲区,导致 CPU 处理其中的数据到中途时 DMA 继续传输数据把之前的缓冲区覆盖掉,造成了数据丢失。所以更合理的做法是借助半满中断实现乒乓缓存。 乒乓缓存是指一个缓存写入数据时,设备从另一个缓存读取数据进行处理;数据写入完成后,两边交换缓存,再分别写入和读取数据。这样给设备留足了处理数据的时间,避免缓冲区中旧数据还没读取完又被新数据覆盖掉的情况。 但是出现了一个小问题,就是 STM32 大部分型号的串口 DMA 只有一个缓冲区,要怎么实现乒乓缓存呢?没错,半满中断。现在,一个缓冲区能拆成两个来用了。看这图我们再来理解一下上面提到的三个中断:接受缓冲区的前半段填满后触发半满中断,后半段填满后触发全满中断;而这两个中断都没有触发,但是数据包已经结束且后续没有数据时,触发空闲中断。 举个例子:向这个缓冲区大小为 20 的程序传送一个大小为 25 的数据包,它会产生三次中断,如下图所示。程序实现原理介绍完成,感谢 ST 提供了 HAL 库,接下来再使用 C 语言实现它们就很简单了。首先开启串口 DMA 接收。 #define RX_BUF_SIZE 20 uint8_t USAR_RX_Buf[RX_BUF_SIZE]; 在上面的例子中,我们定义了一个大小为 20 的缓冲区 USAR_RX_Buf,並将其设置为串口 DMA 的接收缓冲区。然后,我们可以使用 HAL 库提供的函数来开启串口 DMA 接收。 HAL_UART_Receive_DMA(&huart1, USAR_RX_Buf, RX_BUF_SIZE); 在串口收到数据之后,DMA 会逐字节搬运到 RX_Buf 中。当搬运到一定的数量时,就会产生中断(空闲中断、半满中断、全满中断),程序会进入回调函数以处理数据。在回调函数中,我们可以将数据写入 FIFO 中供应用读取。 void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) { // 将数据写入 FIFO 中 FIFO_Put(USAR_RX_Buf, RX_BUF_SIZE); } 在上面的例子中,我们使用 HAL 库提供的回调函数 HAL_UART_RxCpltCallback 来处理数据。在这个函数中,我们将数据写入 FIFO 中供应用读取。这样,我们就可以轻松地实现高速的串口收发机制。 使用 STM32 HAL 库可以轻松地实现高速的串口收发机制,轻松跑上 2M 波特率。同时,我们还可以使用乒乓缓存和空闲中断来避免数据丢失和提高系统的可靠性。
2025-04-04 19:14:28 1.22MB stm32
1
基于FPGA的Cortex-M3 MCU系统:带AHB APB总线与UART硬件RTL源码,支持ARMGCC与SWD仿真调试,扩展功能丰富的MCU开发平台(暂不含DMA和高级定时器),基于FPGA的Cortex-M3 MCU系统:RTL源码工程,含AHB APB总线、UART串口、四通道定时器,配套仿真与驱动,可扩展用户程序与IP调试功能(非DMA和高级定时器版本),FPGA上实现的cortex-m3的mcu的RTL源码,加AHB APB总线以及uart的硬件RTL源代码工程 使用了cortex-m3模型的mcu系统,包含ahb和apb总线,sram,uart,四通道基本定时器,可以跑armgcc编译的程序。 带有swd的仿真模型。 可以使用vcs进行swd仿真读写指定地址或寄存器。 带有的串口uart rtl代码,使用同步设计,不带流控。 带有配套的firmware驱动,可以实现收发数据的功能。 带有的四通道基本定时器,可以实现定时中断,具有自动reload和单次两种模式。 用于反馈环路实现、freertos和lwip等时基使用。 暂时不包括架构图中的DMA,高级定时器和以太网,后期
2025-04-02 15:33:06 11.35MB 柔性数组
1
STM32是一款基于ARM Cortex-M内核的微控制器,由意法半导体公司(STMicroelectronics)生产。在本文中,我们将深入探讨如何使用STM32的硬件SPI(Serial Peripheral Interface)和DMA(Direct Memory Access)功能来高效地控制OLED(Organic Light-Emitting Diode)显示屏。 OLED屏幕是一种自发光显示技术,无需背光,因此具有更高的对比度和更低的功耗。在STM32上驱动OLED屏幕通常涉及通过SPI接口发送命令和数据,而DMA可以极大地减轻CPU负担,提高系统效率。 1. **STM32硬件SPI**:SPI是一种同步串行通信协议,用于微控制器与外部设备间的数据传输。STM32内建了多个SPI接口,每个都支持主模式和从模式。在控制OLED屏幕时,STM32通常作为主机,OLED驱动芯片作为从机。配置SPI时,需要设置时钟极性(CPOL)、时钟相位(CPHA)、数据位宽、波特率等参数。 2. **DMA功能**:DMA是一种允许数据在内存和外设之间直接交换的技术,无需CPU干预。在STM32中,有多个DMA通道可以分配给不同的外设,如SPI。通过设置DMA传输请求源、传输数据大小、地址增量方式等,可以实现数据的批量传输,显著提高系统性能。 3. **配置OLED屏幕**:OLED屏幕通常使用I2C或SPI接口,这里我们关注SPI。需要初始化OLED驱动芯片,发送初始化序列,包括设置显示模式、分辨率、对比度等。这些命令通过STM32的SPI接口发送。 4. **DMA与SPI的配合**:在STM32中,设置SPI接口为DMA模式,指定相应的DMA通道。当SPI发送缓冲区为空时,DMA会自动从内存中读取数据并发送,直到所有数据传输完毕。这样,CPU可以执行其他任务,而不是等待SPI传输完成。 5. **数据传输**:在显示图像或文本时,需要将数据加载到内存中的一个缓冲区,然后通过DMA传输到SPI接口。STM32的库函数或HAL(Hardware Abstraction Layer)可以简化这个过程。 6. **中断处理**:为了确保数据正确发送,还可以设置SPI的中断,例如传输完成中断。当DMA传输结束时,中断处理函数会被调用,进行必要的清理工作,如重置传输标志,准备下一次传输。 7. **代码示例**:使用STM32CubeMX生成初始的SPI和DMA配置,然后在用户代码中编写OLED屏幕的初始化和数据传输函数。例如,使用HAL_SPI_Transmit_DMA()启动一个DMA传输,并在中断服务程序中处理传输完成事件。 8. **优化考虑**:在实际应用中,还需要考虑电源管理、显示刷新率、屏幕旋转等功能。同时,为了防止数据竞争,需要正确管理和同步SPI和DMA的访问。 总结,通过STM32的硬件SPI和DMA,我们可以高效地控制OLED屏幕,实现流畅的显示效果,同时降低CPU的负载,提升整个系统的响应速度和能效。理解和熟练掌握这些技术,对于开发基于STM32的嵌入式系统至关重要。
2025-03-31 20:43:47 7.82MB STM32
1
VIVADO中UART IP核 使用的是AXI-lite通信协议,外部接口分别为RX、TX以及Interrupt。该工程中使用了UART IP核,并且写了AXI-Lite mater部分代码实现UART IP核通信,在tb文件中写了UART rtl代码,可实现IP核与代码直接的发送接收。代码可直接进行仿真。
2025-02-11 17:30:30 35.59MB vivado fpga uart通信
1
【STM32+HAL】七针0.96寸OLED显示配置(SPI + DMA)是关于使用STM32微控制器通过SPI接口和DMA(直接内存访问)来驱动0.96英寸OLED显示屏的教程。这篇教程将涵盖STM32微控制器的基础知识,OLED显示屏的工作原理,SPI通信协议,以及如何利用STM32的HAL库进行DMA配置。 STM32是意法半导体公司(STMicroelectronics)推出的基于ARM Cortex-M系列内核的微控制器。它们广泛应用于嵌入式系统设计,以其高性能、低功耗和丰富的外设接口而受到青睐。 OLED(Organic Light-Emitting Diode,有机发光二极管)显示屏是一种自发光显示技术,每个像素由有机材料组成,当电流通过时会发出光。与LCD相比,OLED具有更高的对比度、更快的响应速度和更广的视角。0.96英寸OLED通常适用于小型嵌入式设备,如智能硬件、物联网设备等。 在STM32上配置OLED显示,首先需要理解SPI(Serial Peripheral Interface)通信协议。SPI是一种同步串行接口,允许主设备(在这里是STM32)与一个或多个从设备(OLED驱动芯片)进行全双工通信。SPI有四种传输模式,通过调整时钟极性和相位,可以实现灵活的数据传输方向和时序。 HAL库是STM32的高级层软件框架,它为开发者提供了标准化的API(应用程序编程接口),简化了底层硬件的控制。在配置OLED显示时,我们需要使用HAL库中的SPI初始化函数,设置SPI的工作模式、时钟频率、数据位宽等参数。 接下来是DMA的介绍。DMA是一种硬件机制,允许数据在没有CPU参与的情况下直接在内存和外设之间传输,从而提高系统的效率。在本例中,我们使用DMA来传输要显示的数据,减轻CPU负担。配置DMA涉及选择合适的通道,设置源和目标地址,以及传输长度。同时,还需要在SPI传输过程中启用DMA请求,以便在SPI完成数据发送后触发DMA传输。 具体步骤包括: 1. 初始化STM32系统时钟,确保足够的时钟资源供SPI和DMA使用。 2. 配置GPIO引脚,用于连接STM32和OLED的SPI接口及使能、复用等功能引脚。 3. 使用HAL_SPI_Init()函数初始化SPI接口,设置其工作模式、时钟速度等参数。 4. 配置DMA,使用HAL_DMA_Init()函数,指定传输方向、通道、地址和长度。 5. 将DMA与SPI接口关联,使用HAL_SPI_Transmit_DMA()函数开启传输,并在需要时启动DMA传输。 6. 编写中断服务程序,处理DMA传输完成的中断事件,更新显示数据或进行其他操作。 在实践中,还需要编写驱动代码来控制OLED显示特定的内容,这可能涉及对OLED显示芯片的命令序列的理解,例如初始化序列、清屏、设置坐标、显示文本或图像等。这部分通常涉及到与OLED驱动芯片的数据手册紧密相关的寄存器操作。 总结来说,"七针0.96寸OLED显示配置(SPI + DMA)"涵盖了STM32微控制器的HAL库使用,SPI通信协议,以及DMA传输机制,这些都是嵌入式系统开发中的重要知识点。通过学习和实践这个主题,开发者能够提升其在嵌入式系统设计和硬件驱动编程的能力。
2025-02-08 01:20:53 8.82MB stm32
1
EFM32(Energy Micro EFM32)是一款由Silicon Labs公司开发的微控制器系列,以其低功耗性能和丰富的外设集而受到广泛应用。本文将深入探讨EFM32微控制器的boot升级过程,特别是在使用IAR Embedded Workbench集成开发环境(IDE)时的情况。IAR是一个强大的C/C++编译器和调试工具,适用于多种嵌入式系统,包括EFM32。 EFM32的Bootloader是微控制器在上电或复位后执行的第一段代码,它负责加载应用程序到内存并启动执行。Bootloader在固件更新、错误恢复和系统初始化等方面扮演关键角色。官方提供的bootloader demo是一个参考实现,可以帮助开发者理解如何设计和实现一个安全可靠的升级流程。 UART(通用异步接收/发送)是微控制器常用的一种串行通信接口,用于设备之间的数据传输。在EFM32的boot升级过程中,UART常被用作与外部设备(如PC)通信的通道,传输新的应用程序代码。开发者需要配置UART的波特率、数据位、停止位和奇偶校验等参数,确保通信的稳定性和可靠性。 在IAR版本的boot升级过程中,首先需要在IAR Embedded Workbench中编写和编译bootloader代码,确保其能够正确识别和处理接收到的升级数据。然后,开发者需要创建一个应用项目,编写应用程序代码,并将其编译成可执行文件。这个可执行文件将在bootloader成功接收后被加载到EFM32的闪存中。 在boot升级流程中,安全是至关重要的。为了防止非法或损坏的固件被加载,bootloader通常会进行完整性检查,例如计算校验和或使用数字签名技术。此外,bootloader还应包含故障恢复机制,如在升级失败时能够回滚到已知良好的旧版本固件。 在实际操作中,开发者通常会利用专用的固件更新工具或编程器通过UART接口与EFM32进行交互,将新的应用程序文件发送给微控制器。这个过程中可能涉及到的文件格式有HEX、BIN或ELF,它们是不同类型的二进制文件,用于存储编译后的机器码。 总结来说,EFM32的boot升级过程涉及bootloader的设计、IAR IDE的使用、UART通信的配置以及固件安全性的考虑。理解并掌握这些知识点对于开发和维护基于EFM32的嵌入式系统至关重要。通过官方提供的bootloader demo和IAR Embedded Workbench,开发者可以更加高效地实现固件的更新和系统维护。
2024-12-26 17:50:10 748KB EFM32 BOOT uart app
1
标题中的“中颖最新afe,367601”指的是中颖电子推出的新型AFE(Analog Front End,模拟前端)芯片,型号为367601。AFE芯片在电子设备中通常用于处理模拟信号,它集成了多种模拟电路功能,如ADC(模拟数字转换器)、DAC(数字模拟转换器)、滤波器等,以便于系统对模拟信号的采集、处理和输出。 描述中提到的“使用uart和afe通信”是指通过UART(通用异步收发传输器)接口与AFE芯片进行通信。UART是一种简单且广泛使用的串行通信协议,用于设备间的双向数据传输。在这里,它作为单片机(如SH79F6441)与AFE芯片367601之间的通讯桥梁,使得开发者可以轻松控制AFE的参数设置和数据读取,简化了开发流程。 标签中的“网络”可能指的是AFE芯片或单片机在物联网应用中的网络连接能力,这可能意味着该芯片或解决方案支持TCP/IP协议栈或其他网络协议,以实现远程数据传输和控制。 “单片机”是微控制器的另一种称呼,它是一个集成的集成电路,包含CPU、内存、定时器/计数器以及输入/输出接口等,常用于嵌入式系统中。描述中提到“本人熟悉各种单片机开发”,暗示了提供者具有丰富的单片机编程和应用经验,能够帮助客户解决基于单片机的系统设计问题。 压缩包内的文件名称“SH3676016B+SH79F6441一线通方案DemoCode_V1.0_20230301”揭示了一个具体的开发方案,其中包括了AFE芯片SH367601和单片机SH79F6441的“一线通”(可能指的是UART通信)示例代码。这个版本号为V1.0的DemoCode应该是2023年3月1日发布的,包含了实现UART通信的基本代码和配置示例,供开发者参考和使用。 综合以上信息,我们可以理解这是一个关于中颖电子AFE芯片367601与单片机SH79F6441通过UART通信的开发方案。该方案可能涵盖了AFE的初始化、数据交换、错误处理等方面,适用于需要高性能模拟信号处理和网络功能的嵌入式系统设计。对于开发者来说,通过提供的DemoCode,他们可以快速理解和实现AFE与单片机间的通信,从而加速项目开发进程。同时,由于提供者表示愿意交流并指导客户开发,这表明他们可能还提供技术支持和服务,帮助客户解决实际开发过程中遇到的问题。
2024-12-11 14:30:16 1.93MB 网络 网络
1