YOLOv5是一种高效、快速的目标检测框架,尤其适合实时应用。它采用了You Only Look Once (YOLO)架构的最新版本,由Ultralytics团队开发并持续优化。在这个基于Python的示例中,我们将深入理解如何利用YOLOv5进行人脸检测,并添加关键点检测功能,特别是针对宽脸(WideFace)数据集进行训练。 首先,我们需要安装必要的库。`torch`是PyTorch的核心库,用于构建和训练深度学习模型;`torchvision`提供了包括YOLOv5在内的多种预训练模型和数据集处理工具;`numpy`用于处理数组和矩阵;而`opencv-python`则用于图像处理和显示。 YOLOv5模型可以通过`torch.hub.load()`函数加载。在这个例子中,我们使用的是较小的模型版本'yolov5s',它在速度和精度之间取得了较好的平衡。模型加载后,设置为推理模式(`model.eval()`),这意味着模型将不进行反向传播,适合进行预测任务。 人脸检测通过调用模型对输入图像进行预测实现。在`detect_faces`函数中,首先对图像进行预处理,包括转换颜色空间、标准化像素值和调整维度以适应模型输入要求。然后,模型返回的预测结果包含每个检测到的对象的信息,如边界框坐标、类别和置信度。在这里,我们只关注人脸类别(类别为0)。 为了添加关键点检测,定义了`detect_keypoints`函数。该函数接收检测到的人脸区域(边界框内的图像)作为输入,并使用某种关键点检测算法(这部分代码未提供,可以根据实际需求选择,例如MTCNN或Dlib)找到人脸的关键点,如眼睛、鼻子和嘴巴的位置。关键点坐标需要转换回原始图像的坐标系。 最后,`detect_faces`函数返回的人脸和关键点信息可以用于在原始图像上绘制检测结果。这包括边界框和置信度信息,以及关键点的位置,以可视化验证检测效果。 需要注意的是,这个示例假设已经有一个训练好的YOLOv5模型,该模型是在宽脸数据集上进行过训练,以适应宽角度人脸的检测。宽脸数据集的特点是包含大量不同角度和姿态的人脸,使得模型能够更好地处理真实世界中的各种人脸检测场景。 如果要从零开始训练自己的模型,你需要准备标注好的人脸数据集,并使用YOLOv5的训练脚本(`train.py`)进行训练。训练过程中,可能需要调整超参数以优化模型性能,如学习率、批大小、训练轮数等。 总的来说,这个Python示例展示了如何集成YOLOv5进行人脸检测和关键点检测,适用于对实时或近实时应用进行人脸分析的场景。为了提高性能,你可以根据实际需求调整模型大小(如使用'yolov5m'或'yolov5l'),或者自定义训练以适应特定的数据集。同时,关键点检测部分可以替换为更适合任务的算法,以达到更好的效果。
2024-06-23 16:42:18 24KB python
1
来源:大创的时候和同学采集的各种各样的数据集,图像已经清洗; 介绍:本数据集包含了各种帽子,大概每个类别1000张; 补充:高质量版本还没有上传 预告:高质量版本包含大量的图像+txt+xml格式的数据集 且帽子种类更为丰富 标记方式:大学生手动标记,数据集已经被清洗
2024-06-20 09:22:32 170.91MB 数据集 yolov5
1
火灾烟雾检测数据集
2024-06-20 09:13:54 472.53MB 数据集 yolov5 火灾烟雾检测 目标识别
1
1、资源内容:机器学习大作业-图像识别-安检识别+实验报告+源代码+文档说明+YOLOv5,python实现 2、代码特点:内含运行结果,不会运行可私信,参数化编程、参数可方便更改、代码编程思路清晰、注释明细,都经过测试运行成功,功能ok的情况下才上传的。 3、适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。 4、作者介绍:某大厂资深算法工程师,从事Matlab、Python、C/C++、Java、YOLO算法仿真工作10年;擅长计算机视觉、 目标检测模型、智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、智能控制、路径规划、无人机等多种领域的算法仿真实验,更多源码,请上博主主页搜索。 -------------------------------------------------------------------------- -
2024-06-16 15:20:59 544KB 机器学习 python
人脸识别_基于yolov5_arcface的人脸识别项目
2024-06-15 20:51:40 3.41MB yolo 人脸识别 深度学习 人工智能
1
yolov5 web端部署进行图片和视频检测,使用前后端独立部署方式,前端使用的是vue,后端使用python+flask。 相关文章地址: https://blog.csdn.net/cangqiongxiaoye/article/details/133657746
2024-06-13 09:12:34 171.68MB vue.js
1
果蔬识别数据集 经过测试的数据集 如果需要其他的也可以联系作者
2024-06-01 11:44:12 27.84MB yolov5
1
项目包含:路面缺陷检测数据(4类别),数据保存按照YOLOV5文件夹保存,可直接用作目标检测数据集,无需额外处理。 图像分辨率为600*600的RGB图片,数据集道路上的缺陷检测 【数据集介绍】路面缺陷图像数据,4类别:纵向裂纹、横向裂纹、坑洞、不规则裂缝 【数据总大小】74 MB 数据分为分为训练集和验证集 训练集datasets-images-train:841张图片和841个标签txt文件组成 验证集datasets-images-val:231张图片和231个标签txt文件组成 【txt类别文本文件】4类别的具体类别信息 为了方便查看数据,提供了可视化py文件,随机传入一张图片即可绘制边界框,并且保存在当前目录。脚本无需更改,可以直接运行
2024-05-22 11:02:39 74.55MB 目标检测 数据集 缺陷检测
YOLO(You Only Look Once)是一种目标检测算法,其特点是速度快且准确率高。在进行YOLO的落地部署时,需要考虑以下几个方面: 1. 硬件选择:为了实现实时目标检测,需要选择适合的硬件设备。通常情况下,使用GPU可以加速YOLO的推理过程。 2. 模型训练与转换:首先,需要使用标注好的数据集对YOLO模型进行训练。训练完成后,将模型转换为适合部署的格式,如TensorRT、OpenVINO等。 3. 模型优化:为了提高YOLO的推理速度,可以进行模型优化。例如,使用剪枝技术减少模型参数量、使用量化技术减少模型的存储空间和计算量等。 4. 推理引擎选择:选择适合的推理引擎进行部署。常用的推理引擎有TensorRT、OpenVINO、NCNN等,它们可以针对不同硬件平台进行优化。 5. 输入数据预处理:在进行目标检测之前,需要对输入图像进行预处理,如图像缩放、归一化等操作。 6. 后处理与结果展示:在得到目标检测结果后,可以进行后处理操作,如非极大值抑制(NMS)来去除冗余的检测框。最后,将结果展示在图像或视频上。
2024-05-21 19:15:05 2.1MB
1
yolov5 yolo yolov7 明火烟雾 AI
2024-05-20 15:05:16 320.43MB yolov5
1