【基于MPC单步垂直泊车的自动泊车系统:Carsim与Matlab联合仿真及持续优化版本】,MPC单步垂直泊车技术:Carsim与Matlab联合仿真下的自动泊车模型预测控制优化与实践,【5.MPC单步垂直泊车】APA 单步垂直泊车 模型预测MPC 自动泊车Carsim与Matlab联合仿真 后期会继续迭代更新的版本 包含垂直路径数据点(只有路径点)和MPC控制算法 后可以有参考模型,全部开源,入群后,可在群里提问,会。 后期不断优化。 1.Carsim2019 2020场景及车辆配置文件 2.Simulink文件包含stateflow纵向逻辑控制 3.MPC横向控制算法文件 4.垂直路径点处理.m 5.群里 6.跟踪误差等数据分析画图脚本 ,核心关键词: MPC单步垂直泊车; APA; 模型预测MPC; 自动泊车; Carsim与Matlab联合仿真; 垂直路径数据点; MPC控制算法; 后期优化; Carsim2019/2020场景; 车辆配置文件; Simulink文件; stateflow纵向逻辑控制; MPC横向控制算法文件; 垂直路径点处理; 群里; 跟踪误差数据分析画
2025-04-07 14:28:02 436KB 数据仓库
1
matlab绘图 matlab绘图美化工具.zip
2025-04-07 13:52:40 466KB matlab
1
阿克曼转向车辆运动学模型建立与Simulink仿真验证(附详细建模过程说明文档),基于阿克曼转向的车辆运动学模型建立与Simulink仿真验证(版本为MATLAB Simulink 2018b),基于阿克曼转向的车辆运动学模型 在simulink中建立车辆运动学模型,为路径规划奠定基础,能够更好的检验简化的运动学模型反映运动过程的准确性。 包括:1、simulink仿真验证(版本为2018b) 2、说明文档--详细的建模过程 ,基于阿克曼转向的车辆运动学模型; simulink仿真验证(2018b); 建模过程说明文档。,阿克曼转向模型:基于Simulink的运动学仿真验证及详细建模流程说明
2025-04-07 13:12:14 765KB
1
基于SRM开关磁阻电机电流斩波控制的软件仿真研究——转速电流双闭环Matlab Simulink仿真模型及其应用文档与参考文献,基于SRM的开关磁阻电机电流斩波控制技术研究:双闭环控制策略的Matlab Simulink仿真模型与文档实现,SRM 开关磁阻电机电流斩波控制 软件仿真 转速电流 双闭环 matlab simulink 仿真 模型 含有文档可直接用的那种,需要的话还可提供参考文献 ,SRM; 开关磁阻电机; 电流斩波控制; 软件仿真; 转速电流双闭环; Matlab Simulink仿真; 模型; 参考文献,SRM开关磁阻电机电流斩波控制与双闭环仿真模型研究
2025-04-07 09:57:28 1.55MB rpc
1
一层材料的有限差分瞬态传热。 两边的BCs是对流和辐射; 炉温/火温被视为汇温度。 • 输入:热特性、层数、厚度、环境温度、火灾温度 • 输出:计算暴露和未暴露的表面温度,绘制通过壁厚的温度分布轮廓(动画)
2025-04-07 09:40:01 16KB matlab
1
海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-04-07 09:14:38 4.93MB matlab
1
智能车辆路径跟踪控制是自动驾驶和无人驾驶技术中的关键环节,它涉及到车辆如何准确地沿着预设路线行驶。在本主题中,我们将深入探讨两种主要的控制算法:纯跟踪控制与Stanley控制算法,以及可能涉及的其他线性相关算法。这些算法通常在MATLAB环境中进行仿真和开发。 纯跟踪控制是一种基础的车辆路径跟踪方法,它通过比较车辆的实际位置与期望轨迹之间的偏差来调整车辆的转向角。这种控制策略的核心在于设计合适的控制器,如PID控制器,以减小位置误差并确保车辆稳定行驶。在MATLAB中,可以通过建立车辆模型,定义目标路径,然后设置控制器参数来实现这种控制策略的仿真。 Stanley控制算法是一种更先进的路径跟踪方法,由Christopher Thrun、Michael Montemerlo和Dmitry Kononenko于2005年提出。它考虑了车辆的前向传感器(如激光雷达或摄像头)提供的信息,以确定车辆的横向和纵向偏差。Stanley算法将这两个偏差转换为方向盘角度,使车辆能够无滑移地跟踪路径。在MATLAB中,实现Stanley控制通常包括三个步骤:获取传感器数据、计算偏差和转换为方向盘命令。 除了这两种控制算法,还有其他线性相关算法可以用于路径跟踪,如LQR(线性二次调节器)和模型预测控制(MPC)。LQR通过最小化一个性能指标(如误差和控制输入的能量)来设计控制器。MPC则是一种前瞻性的控制策略,它考虑到未来多个时间步的预期行为,以优化控制决策。 在提供的压缩包文件中,"智能车辆路径跟踪.html"可能是对这些概念的详细解释,或者是一个MATLAB仿真演示的说明。而"3.jpg"、"2.jpg"、"1.jpg"可能是相关算法的示意图或仿真结果的截图,可以帮助理解控制算法的工作原理。"智能车辆路径跟踪控制纯.txt"可能是纯跟踪控制算法的MATLAB代码,供学习和参考。 智能车辆路径跟踪控制是自动驾驶技术的重要组成部分,涉及到控制理论、传感器融合和车辆动力学等多个领域。通过MATLAB这样的工具,我们可以对这些复杂的算法进行建模、仿真和优化,为实际应用提供坚实的基础。
2025-04-07 07:39:51 2.4MB matlab
1
设计是运用MATLAB编程来实现抽样定理及其信号恢复的仿真并能在建立的图形用户界面上显示出相应的仿真结果。目的在于能够熟练的应用MATLAB软件来建立友好的用户界面,通过界面来显示原始信号、抽样信号以及恢复后仿真的信号。通过编写程序来完成用户界面上各个按钮的功能,通过MATLAB软件中的信号分析的方法来验证抽样定理的正确性。
2025-04-06 22:48:42 915KB MATLAB 抽样定理
1
模糊PID与Carsim联合仿真下的ABS防抱死制动系统:优化制动性能与稳定控制,ABS模糊Pid联合仿真:Carsim与Matlab Simulink协同实现高效制动控制,优化滑移率,稳定轮速,提升制动性能,ABS 防抱死制动系统———模糊Pid Carsim与matlab simulink联合仿真,相较于单独使用simulink仿真更加可靠 (Carsim2019,Matlab2018a) 控制目标为控制车轮的滑移率在最优滑移率附近,使制动时车轮不抱死并且获得较好的制动性能。 控制方式为模糊PID控制器(附带模糊控制器设置代码,帮你入门模糊控制),输入为实际滑移率与最优滑移率的偏差,输出为制动压力调节信号。 相比于PID控制器、逻辑门限值制动效果较好,轮速没有那么多抖动,较为稳定(视频中黑车为Pid控制器,蓝绿色的车是逻辑门限值的,其中黑车的制动距离明显较短)。 说明文档和模型注释说明。 同时欢迎一起交流ABS相关问题。 ,关键词: 1. ABS防抱死制动系统 2. 模糊PID 3. Carsim与matlab simulink联合仿真 4. 控制目标:控制车轮滑移率 5. 制动
2025-04-06 22:35:55 2.13MB edge
1
基于二阶自抗扰ADRC和MPC的路径跟踪控制,使用ADRC对前轮转角进行补偿,对车辆的不确定性和外界干扰具有一定抗干扰性,有参考lunwen,Carsim版本为2019,Matlab版本为2021 ,基于二阶自抗扰ADRC; MPC路径跟踪控制; 车辆不确定性抗干扰性; 外界干扰补偿; 参考lunwen; Carsim 2019版本; Matlab 2021版本,基于二阶自抗扰ADRC与MPC的车辆路径跟踪控制研究 在现代汽车电子控制系统中,路径跟踪控制是实现车辆自动驾驶的关键技术之一。随着自动驾驶技术的不断发展,对车辆路径跟踪控制系统的性能要求也愈来愈高,尤其是在面对车辆自身不确定性和复杂多变的外部环境时,如何确保车辆能够准确、稳定地跟踪预定路径成为了一项重要课题。为了提高车辆在真实道路条件下的行驶稳定性和安全性能,研究者们开始探索将二阶自抗扰控制(ADRC)与模型预测控制(MPC)相结合的先进控制策略。 自抗扰控制(ADRC)是一种基于对象动态模型的控制技术,它通过实时估计和补偿系统的不确定性和外部干扰来提高系统的鲁棒性。在路径跟踪控制中,ADRC可以有效地补偿由车辆的动态特性不一致以及复杂外部环境引起的不确定性,从而提高车辆路径跟踪的精确性和稳定性。 模型预测控制(MPC)是一种基于优化控制理论的先进控制策略,它通过预测未来一段时间内系统的动态行为,然后在线求解最优控制序列以实现对系统未来行为的指导。MPC具有良好的处理约束能力和优化多目标问题的能力,适用于处理复杂的路径跟踪任务。 将ADRC和MPC相结合,可以充分发挥两者的优势。ADRC的强鲁棒性能可以处理车辆在复杂环境下的不确定性,而MPC的预测和优化能力则有助于实现对车辆未来路径的精确控制。这种结合使用的方法不仅能够保证车辆在受到不确定性和外部干扰时仍能保持稳定跟踪预定路径,而且还可以在满足各种约束条件的前提下优化车辆的行驶性能。 为了验证和分析所提出的控制策略的实际效果,研究中使用了Carsim软件进行车辆模型的搭建和仿真实验。Carsim作为一个被广泛认可的车辆动力学仿真平台,能够提供精确和高保真的车辆模型和环境模拟。同时,实验中的控制算法实现则是通过Matlab软件及其相应的控制系统工具箱来完成的。Matlab作为一个功能强大的数学计算和仿真平台,为控制算法的开发和测试提供了便利。 在所提供的压缩包文件中,包含了多个与基于二阶自抗扰ADRC和MPC路径跟踪控制相关的文档,这些文档涵盖了研究的引言、车辆稳定性与抗干扰性分析、以及具体的控制策略研究等内容。通过这些文档,研究人员可以深入理解该控制策略的设计理念、实现方法和仿真实验结果,为未来该领域的进一步研究和应用提供了宝贵的资料和参考。 基于二阶自抗扰ADRC和MPC的路径跟踪控制为车辆自动驾驶提供了新的解决方案,它不仅提升了车辆路径跟踪的稳定性和精确性,还增强了系统对外界干扰的抵抗能力。随着相关技术的不断完善和成熟,我们有理由相信,这一控制策略将在未来的自动驾驶技术中扮演重要的角色。
2025-04-06 22:03:34 2MB
1