本文档介绍了基于YOLOv11模型的安全帽检测系统的开发,旨在识别各种颜色的安全帽。文中涵盖了使用ONNX格式的模型、Tkinter制作的用户界面以及一系列辅助功能如数据增强的方法、置信度调整等细节,并提供了从环境搭建到最终实现的整体指导和代码示例。此外还涉及系统未来的改进步骤。该系统不仅具备良好的鲁棒性和实用性,并且具有很强的灵活性和扩展性。 适合人群:具有基本编程背景并对机器学习尤其是计算机视觉感兴趣的研究人员和从业者。 使用场景及目标:适用于工地上各类环境中对工作人员佩戴情况的有效监测,旨在提高施工场所的安全管理效能;同时也适用于研究人员学习YOLOv11及相关检测技术。 其它:系统在未来有望发展成为实时监控系统,并支持多任务处理,进一步增加其实用价值。
2025-08-26 15:15:03 38KB 深度学习 Tkinter 安全帽检测 ONNX
1
本文档提供了在网络安全领域利用Python和K-means算法检测网络流量异常的方法。主要内容涵盖数据准备,使用合成数据进行实验以及具体实现步骤,包括必要的模块导入,数据的加载与处理。介绍了K-means聚类的应用方式,并通过对模拟数据集进行可视化显示聚类效果;最后详细分析如何识别异常数据及展示最终的效果。 适用人群:适用于具备Python基础知识的安全分析师或工程师。 使用场景及目标:适用于网络安全监测,帮助自动化地检测网络环境中可能存在的入侵事件或者异常情况。 阅读建议:此文档不仅提供源代码示例供跟随实践,还涵盖了常见问题及其改进思路,并鼓励在未来的研究中结合实际情况做适当修改和应用。
2025-08-14 10:18:33 37KB K-means Python Scikit-learn 机器学习
1
本文详细介绍了一个使用MATLAB来实现实验性时间序列预测项目的流程,涵盖从合成数据生成到基于CNN-BiLSTM结合注意力建模的全过程。首先介绍了项目背景及其理论依据。紧接着详细展示如何构造数据以及进行特征工程。在此基础上建立并自定义了CNN-BiLSTM-Attention混合模型来完成时序预测,并对整个训练、测试阶段的操作步骤进行了细致描绘,利用多个评价指标综合考量所建立模型之有效性。同时附有完整实验脚本和详尽代码样例以便于复现研究。 适用人群:具有一定MATLAB基础的研究员或工程师。 使用场景及目标:适用于需要精准捕捉时间序列特性并在不同条件下预测未来值的各种场景。 此外提供参考资料链接及后续研究展望。
2025-08-08 20:38:06 37KB BiLSTM Attention机制 时间序列预测 MATLAB
1
JavaScript是一种广泛应用于Web开发的脚本语言,它不仅在前端界有着重要的地位,近年来也越来越多地被用于服务器端开发(例如Node.js环境)。本压缩包“用JavaScript实现的算法和数据结构,附详细解释和刷题指南.zip”显然是为了帮助开发者深入理解并掌握JavaScript中的算法与数据结构,这对于提升编程能力至关重要。 数据结构是计算机科学的基础,它涉及如何有效地存储和组织数据,以便于执行各种操作。数据结构的选择直接影响到程序的效率、灵活性和可维护性。常见的数据结构有数组、链表、栈、队列、哈希表、树(二叉树、平衡树)、图等。 1. **数组**:是最基础的数据结构,它提供了一种线性存储数据的方式。JavaScript中的数组可以存储任意类型的数据,但访问速度较快,因为它们在内存中是连续存储的。 2. **链表**:与数组不同,链表的元素在内存中不是连续存储的,每个元素(节点)包含数据和指向下一个节点的引用。链表分为单向链表和双向链表,后者支持双向遍历。 3. **栈**:栈是一种后进先出(LIFO)的数据结构,操作主要集中在一端(称为栈顶)。在JavaScript中,可以利用数组的push和pop方法来模拟栈的操作。 4. **队列**:队列是一种先进先出(FIFO)的数据结构,操作同样集中在两端,一端添加元素(入队),另一端删除元素(出队)。 5. **哈希表**:哈希表通过键值对进行数据存储,查找速度快,通常时间复杂度为O(1)。JavaScript对象本质上就是一种哈希表。 6. **树**:二叉树是最简单的树结构,每个节点最多有两个子节点。二叉搜索树(BST)可以高效地进行查找、插入和删除操作。平衡树如AVL树和红黑树,通过保持树的高度平衡来确保操作性能。 7. **图**:图由节点(顶点)和连接节点的边组成,可以用来表示复杂的关系网络。图的常见操作包括遍历(深度优先搜索DFS和广度优先搜索BFS)和最短路径算法(如Dijkstra和Floyd-Warshall)。 这个压缩包提供的资源很可能是对以上数据结构的JavaScript实现,每个数据结构都会包含其基本操作(如插入、删除、查找)的代码示例,并且可能伴有详细的解释和练习题目。通过学习和实践这些示例,你可以更好地理解和运用这些数据结构,解决实际编程问题。 此外,刷题是提高算法和数据结构技能的有效方式。通常,程序员会使用在线平台如LeetCode、HackerRank等进行练习。这个“刷题指南”可能会包含一些推荐的题目,以及解题策略和技巧,帮助你在解决实际问题时游刃有余。 深入理解并熟练运用JavaScript中的算法和数据结构,对于成为一名优秀的Web开发者至关重要。这个压缩包提供的资源将是你提升编程技能的宝贵资料。
2025-08-05 19:41:15 5.24MB 数据结构
1
NMEA模拟器 NMEA 模拟器基于 NMEA 0183 是用于船舶电子设备(例如回声测深仪、声纳、风速计、陀螺罗经、自动驾驶仪、GPS)之间通信的组合电气和数据规范。 它有 3 个主要项目:1.- 模拟器.. 2.- NMEA 解码器 3.- NMEA 编码器。
2025-08-04 18:01:51 349KB nmea
1
数学建模是将实际问题转化为数学问题的过程,它在工程技术、经济管理和科学研究等领域发挥着至关重要的作用。数学建模算法与应用课件第三版为学习者提供了一个全面的数学建模学习平台,通过PPT介绍、程序示例以及配套数据,使学习者能够深入理解数学建模的概念和实际应用。 PPT介绍部分通常是课程的框架和理论基础,它们详细解释了数学建模的重要性和基本步骤,如问题的识别、模型的构建、模型的求解以及模型的验证等环节。这些介绍能够帮助初学者建立起对数学建模的整体认识,同时为深入研究打下坚实的基础。 程序部分包含了多种数学建模的算法实现,这些算法可能是线性规划、非线性规划、动态规划、图论算法、排队论模型、模拟算法等。通过程序的演示,学习者可以更加直观地理解算法的逻辑和数学原理,并通过运行代码来观察算法在解决特定问题时的性能和效果。这对于提高解决实际问题的能力尤为重要。 此外,配套数据是数学建模算法验证和应用的关键,数据的准确性和代表性直接影响模型的可靠性和预测能力。这些数据可能是历史数据、实验数据或者模拟数据,它们为模型的构建和验证提供了必需的输入。学习者可以通过对这些数据进行分析、处理和应用,进一步加深对数学建模过程的理解。 泰迪杯数模是全国大学生数学建模竞赛的一种,它鼓励学生运用数学建模的知识和技能,解决实际问题。通过参与此类竞赛,学生不仅能够检验自己对数学建模理论和方法的掌握程度,还能够提升团队协作和解决复杂问题的能力。因此,数学建模算法与应用课件第三版对于准备参加泰迪杯数模或其他相关竞赛的学生来说,是一份宝贵的资源。 数学建模算法与应用课件第三版是一套系统性的学习材料,它通过理论介绍、程序示例和实际数据,帮助学习者掌握数学建模的核心知识,提高解决实际问题的能力,为参与数学建模竞赛打下坚实的基础。
2025-07-29 14:56:34 161.89MB
1
火龙果软件工程技术中心  本文内容包括:引言示例场景创建Serviceprovider创建WebSphereESBWAS配置ESB创建ServiceConsumer总结参考资料本文主要介绍如何通过WebSphereESB实现协议转换和数据转换功能:通过WebsphereESB实现SOAP/HTTP和JMS之间的协议转换;实现JMSObjectMessage与BusinessObject之间、以及BusinessObject与JavaObject的数据转换;实现客户端与ESB之间request/response的交互方式,客户端向ESB发送带有数据对象的请求,ESB请求Web服务后,将结果以数据
2025-07-19 15:09:04 687KB
1
## 一、项目背景 本项目所用数据集包含了一个家庭6个月的用电数据,收集于2007年1月至2007年6月。这些数据包括有功功率、无功功率、电压、电流强度、分项计量1(厨房)、分项计量2(洗衣房)和分项计量3(电热水器和空调)等信息。 ## 二、数据说明 该数据集共收集了一个月内的`260640条`数据,共`9个`字段。 本项目通过分析家庭用电数据,运用时序分析的方法,旨在深入理解和预测家庭电力消费模式。项目所用数据集涵盖了2007年1月至2007年6月期间一个家庭的电力消耗情况,为研究者提供了长达六个月的详细电力使用记录。这一时间跨度覆盖了不同季节,为季节性电力消费模式的分析提供了丰富信息。数据集包含了有功功率、无功功率、电压、电流强度等多个维度的信息,这些数据对于分析家庭电力使用的特点和模式至关重要。 项目从一个家庭的电力消费出发,但其成果对于更大范围的家庭乃至整个社区的电力需求预测同样具有参考价值。通过对有功功率和无功功率的分析,可以了解家庭在电力系统中所消耗的真实能量和视在能量。电压和电流强度的记录有助于分析家庭电网的稳定性和安全性问题。而分项计量数据,包括厨房、洗衣房以及电热水器和空调的用电情况,使得对家庭内部不同电力消费部分的分析成为可能,这对于优化家庭用电效率和制定节能策略具有实际意义。 在分析方法上,项目采用了时序分析技术。时序分析是指对按照时间顺序排列的数据进行统计分析的方法,这类方法在处理时间序列数据时特别有效。通过时序分析,研究人员可以识别数据中的趋势、季节性模式、周期性规律等,这些对于预测未来的电力需求、调整电力供应策略具有重要意义。 本项目的分析过程可能涉及到了多种数据分析技术。首先是数据预处理,包括数据清洗、数据归一化等,以确保分析的准确性。接下来可能是时间序列的平稳性检验,非平稳时间序列通常需要通过差分等方法转换为平稳序列。在此基础上,应用各种时序模型,如ARIMA模型、季节性分解的时间序列预测模型(STL),以及利用机器学习算法来提高预测精度。项目中可能还包括了特征工程,通过创建新特征或变换现有特征来增强模型的预测能力。 该项目还可能涉及到一些编程和软件工具的使用,尤其是Python编程语言。Python在数据分析领域广泛应用,支持多种数据分析库,如Pandas、NumPy和Matplotlib等,这些工具对于数据处理和可视化提供了极大的便利。此外,Python的机器学习库,如scikit-learn、TensorFlow或Keras,可能也被用于构建预测模型。 本项目不仅为家庭电力消费研究提供了详细的案例分析,而且在数据处理、时序分析以及预测模型构建方面,提供了宝贵的经验和参考。对于电力公司、政策制定者以及希望提高能源效率的家庭,本项目的研究成果具有较高的应用价值。
2025-07-18 09:39:16 4.3MB python 数据分析 人工智能
1
连续变分模态分解(Successive Variational Mode Decomposition, SVMD),通过引入约束准则来自适应地实现固有模式函数(Intrinsic Mode Function, IMF)分解,可连续提取IMF且不需要设置IMF的数量。与(Variational Mode Decomposition, VMD)相比,SVMD的计算复杂度较低,并且对IMF中心频率初始值的鲁棒性更强。 连续变分模态分解(SVMD)是一种先进的信号处理技术,它的核心目标是将复杂信号分解为一系列固有模式函数(Intrinsic Mode Functions, IMFs)。与经典的EMD(经验模态分解)不同,SVMD通过数学优化算法来实现IMF的提取,其主要优势在于不需要预先设定分解出的IMF数量,而是通过约束准则自适应地对信号进行分解。 SVMD相较于其前身VMD(Variational Mode Decomposition),在计算效率上有显著提升,因为它降低了解决问题的数学复杂度。此外,SVMD对于IMF中心频率初始值的设定具有较强的鲁棒性,即使在不同初始条件设定下,也能较为稳定地得到一致的分解结果,这一点对于信号处理的可靠性和准确性至关重要。 SVMD的应用领域非常广泛,涵盖了从生物医学信号分析到金融时间序列的处理等多个领域。例如,在医学领域,SVMD可以用于心脏电生理信号的分析,帮助识别和提取与心脏节律相关的重要频率分量。在金融领域,它可应用于股票市场数据的波动性分析,从而为投资者提供更为深入的市场波动理解。 在本提供的文件内容中,包含了完整的Matlab源码以及相应的数据集。这些资源对于学术研究者和工程师来说极具价值,因为它不仅提供了理论上的SVMD算法实现,还通过实例演示了如何利用Matlab环境进行信号分解。文件中的license.txt文件可能包含了程序使用和分发的相关许可信息,这保证了用户在遵守许可协议的前提下使用该软件。 对于那些希望通过Matlab进行信号处理的工程师来说,本资源提供了一个强大的工具,用以实现复杂的信号分解任务。通过学习和应用SVMD算法,用户能够更加深入地理解信号的内在结构,并且在实际应用中做出更加准确的预测和决策。 SVMD作为一种高效的信号分解方法,具有广泛的应用前景和实用价值。通过本资源,用户不仅能够理解SVMD的算法原理,还能够直接将其应用于具体问题中,对于提升信号处理能力具有重要意义。
2025-07-10 14:44:03 739KB matlab 信号分解
1
内容概要:本篇文章详述了一项使用MATLAB工具包构建基于SVM二元分类器的技术流程。利用了经典的留一交叉验证(Leave-One-Out Cross Validation)方式评估SVM分类器的效率,展示了具体的设计过程、关键代码以及如何测量评价结果,例如准确度、精准度以及其他几个标准的衡量标准。 适合人群:主要适用于已经掌握基本机器学习概念并对MATLAB有所了解的数据科学从业者或研究学生。 使用场景及目标:适用于各种涉及到对两个不同组别的元素实施区分的任务场合,特别强调在实验设置过程中如何确保检验模型的有效性和稳健性。 其他说明:文中提供的实例基于著名的鸢尾花卉物种识别案例展开讲解,不仅教授了如何手动设定训练集与测试集,而且还涵盖了在实际应用时可能遇到的相关挑战与解决技巧。
2025-06-15 12:52:13 24KB MATLAB 机器学习 鸢尾花数据集
1