matlab simulink二阶线性自抗扰控制器(LADRC)仿真模型,已经封装完成,响应速度快,抗扰能力相较于传统pi更优秀。 采用线性ADRC相较于非线性ADRC大大减少了调参难度,已成功用于电机速度环替代传统pi。 在现代控制理论与实践应用中,线性自抗扰控制器(LADRC)是一种创新的控制策略,它的设计宗旨在于简化控制器设计过程同时提升系统对于扰动的抵抗能力。Matlab Simulink作为一个广泛使用的工程仿真和模型设计工具,为LADRC提供了一个强大的开发平台。仿真模型的封装完成意味着用户可以直接利用模型进行仿真测试,而无需深入了解其内部的复杂算法,从而加快了控制系统的开发与验证过程。 LADRC的核心优势在于其简化的设计流程和优化的抗扰性能。与传统的比例积分微分(PID)控制器相比,LADRC在保持快速响应的同时,能够更加有效地抑制各种干扰,提高了系统的稳定性和鲁棒性。特别是对于电机等快速动态系统,LADRC的表现尤为出色。通过封装好的仿真模型,工程师能够更加便捷地对LADRC进行测试和评估,加速了控制器的优化和应用。 在实际应用中,LADRC尤其适用于电机速度环的控制。电机作为工业领域不可或缺的执行元件,其控制性能直接影响整个系统的效率和质量。LADRC的引入,不仅可以替代传统的PID控制器,还能够在保持控制精度的同时,提高系统的抗扰动能力和动态响应速度。这对于提高电机控制系统的性能具有重要意义。 线性ADRC相较于非线性ADRC来说,在调参方面具有明显的优势。非线性ADRC虽然在理论上具有更强大的适应能力,但参数调整的复杂度往往较高,不利于工程实践。而线性ADRC的设计简化了参数调整过程,使得控制系统的设计和调试更加方便快捷,这也正是其在实际应用中受到青睐的原因之一。 文档中提到的标题相关的二阶线性自抗扰控制器仿真模型,以及伴随的文件,如技术分析文档,都为理解和应用LADRC提供了丰富的资源。技术文档不仅涵盖了仿真模型的使用说明,还可能包括理论分析、设计指南以及案例研究等内容。这些资源对于深入研究LADRC的原理和实现细节,以及在特定应用领域的定制化开发具有重要的参考价值。 图片文件,尽管没有直接的文字描述,但通常在技术文档中作为插图,用于直观展示仿真模型的界面、控制流程或实验结果,帮助用户更好地理解LADRC模型的结构和性能。 LADRC作为一种新兴的控制策略,在简化控制器设计的同时,显著提升了系统的抗扰能力和动态性能。Matlab Simulink的仿真模型封装简化了工程应用的难度,为电机控制等领域的技术进步提供了有力支持。通过封装好的仿真模型,工程师可以更加高效地进行系统仿真和性能评估,加速创新控制技术的应用转化。
2025-07-13 15:12:29 153KB
1
全国1-6批中国传统村落古村落统计数据Excel shp-2023年更新是一个非常有价值的数据资源,尤其对于那些在地理信息系统(GIS)领域工作或研究的人来说。这个数据集不仅包含了丰富的信息,还提供了多种数据格式,使得分析和可视化变得更加灵活。 我们要了解什么是“shapefile”和“Excel”格式。Shapefile是GIS中最常用的一种空间数据格式,它能够存储地理实体(如点、线、面)以及与之相关的属性数据。这种格式是Esri公司开发的,广泛应用于地理空间分析和地图制作。Excel则是一种电子表格软件,由Microsoft Office提供,用于处理数值和文本数据,包括统计分析、财务管理等。在这个数据集中,两者结合提供了空间信息和非空间信息的全面视图。 数据集包含了从第一批次到第六批次的所有中国传统村落的资料,这意味着我们可以追踪到村落的历史变迁和保护状况。这些批次可能代表了不同时间点的认定,反映了政府对古村落保护工作的持续关注和更新。每批名录的详细信息对于历史、文化和社会科学研究至关重要。 在数据内容方面,每个村落都有其名称和所在的县市信息。这为分析提供了基本的地理位置框架。通过这些信息,我们可以进行空间聚类分析,找出古村落分布的模式和规律;或者进行空间关联分析,探究村落与周围环境、经济、人口等因素的关系。 对于拥有GIS基础的同学来说,这个数据集提供了广阔的研究和应用空间。例如,可以利用GIS软件将shapefile数据导入,创建古村落的分布地图,进一步进行地理空间分析,如距离分析、热点分析等,揭示古村落的空间格局。Excel表格则可以用于统计分析,比如计算各地区古村落的数量、比较不同批次间的新增村落等。 同时,数据集还包含KML文件。KML(Keyhole Markup Language)是Google Earth和Google Maps支持的一种地理标记语言,用于描述地球表面的点、线、面等地理信息。用户可以通过KML文件在这些平台上直接查看古村落的位置,进行虚拟游览,增强公众对传统文化遗产的认知。 全国1-6批中国传统村落古村落统计数据Excel shp-2023年更新是一个宝贵的资源,涵盖了丰富的地理、历史和文化信息。无论是学术研究还是政策制定,甚至公众教育,都可以从中受益。利用GIS工具和数据分析方法,我们可以深入挖掘这些数据背后的深刻含义,为古村落的保护和可持续发展提供有力的支持。
2025-07-04 17:09:22 2.96MB 数据集 gis 传统村落
1
内容概要:本文深入探讨了模糊PID与传统PID控制之间的区别和联系,通过三个仿真实验详细展示了两种控制方法在不同条件下的表现。首先介绍了模糊PID控制作为一种结合模糊逻辑和PID控制的新颖策略,在工业控制和自动化领域的广泛应用背景。接着分别进行了单个模糊PID控制模型、模糊PID与PID模型对比、以及三种控制方式(PID、模糊控制、模糊PID)的综合对比仿真实验,揭示了模糊PID在响应速度、稳定性和抗干扰能力方面的优势。最后提供了一份详尽的资料说明报告,帮助读者更好地理解和掌握相关技术。 适用人群:从事工业控制、自动化及相关领域的工程师和技术人员,尤其是对智能控制系统感兴趣的从业者。 使用场景及目标:适用于需要优化现有控制系统性能或考虑引入先进控制技术的企业和个人开发者。主要目标是提高系统的响应速度、稳定性和鲁棒性,从而提升生产效率和产品质量。 其他说明:文中提供的学习资料有助于初学者快速入门并深入了解模糊PID控制理论与实践,同时也为有经验的专业人士提供了宝贵的参考资料。
2025-06-21 15:46:36 1.1MB
1
缝纫机是缝制机械行业最基础的设备,被广泛应用于纺织服装领域,我国目前的缝纫机生产技术成熟度已经较高。由于整机企业可以便利地从市场上获得各类配件,也可以实现高效经济的委托加工,进入缝纫机整机行业门槛相对较低,目前我国缝制机械企业较多。据中国缝制机械协会的不完全统计,我国缝制机械行业现有大小零部件生产企业上千家,从业人员约6 万人,其中,年产值超过500 万元且具有一定规模和影响力的企业的约有200 余家。 1790 年,美国木工托马斯•赛特发首先发明了世界上第一台先打洞、后穿线、缝制皮鞋用的单线链式线迹手摇缝纫机。1841 年,法国裁缝B•蒂莫尼耶发明和制造了机针带钩子的链式线迹缝纫机。胜家公
2025-06-20 13:10:33 2.58MB 智能制造 传统制造
1
西门子200 Smart Modbus:优化轮询通讯程序,支持50个从站离线报警功能实战程序,西门子200smart modbus 50个从站轮询通讯程序 程序优化了传统轮询程序,适合1到50个从站轮询 并且配备离线报警,并且可设置离线次数报警 当从站超过10个站时常规轮询的程序量非常大,用此轮询程序将大大简化工作量 程序完全开源无加密 程序注释清晰,实战程序,可直接修改使用 ,核心关键词: 1. 西门子200smart; 2. Modbus; 3. 50个从站轮询通讯程序; 4. 程序优化; 5. 离线报警; 6. 设置离线次数报警; 7. 工作量简化; 8. 开源无加密; 9. 程序注释清晰; 10. 实战程序。,"西门子Smart Modbus程序:优化轮询通讯,50站离线报警功能开源程序"
2025-06-15 16:52:06 120KB xhtml
1
基于传统图像分割方法的Matlab肺结节提取系统:从CT图像分割肺结节并评估分割效果,附GUI人机界面版本及主函介绍,Matlab肺结节分割(肺结节提取)源程序,也有GUI人机界面版本。 使用传统图像分割方法,非深度学习方法。 使用LIDC-IDRI数据集。 工作如下: 1、读取图像。 读取原始dicom格式的CT图像,并显示,绘制灰度直方图; 2、图像增强。 对图像进行图像增强,包括Gamma矫正、直方图均衡化、中值滤波、边缘锐化; 3、肺质分割。 基于阈值分割,从原CT图像中分割出肺质; 4、肺结节分割。 肺质分割后,进行特征提取,计算灰度特征、形态学特征来分割出肺结节; 5、可视化标注文件。 读取医生的xml标注文件,可视化出医生的标注结果; 6、计算IOU、DICE、PRE三个参数评价分割效果好坏。 7、做成GUI人机界面。 两个版本的程序中,红框内为主函数,可以直接运行,其他文件均为函数或数据。 ,核心关键词: Matlab; 肺结节分割; 肺结节提取; 源程序; GUI人机界面; 传统图像分割; 非深度学习方法; LIDC-IDRI数据集; 读取图像; 图像增强; Gam
2025-05-16 22:21:33 312KB scss
1
传统A*算法与创新版对比:融合DWA规避障碍物的仿真研究及全局与局部路径规划,1.传统A*算法与改进A*算法性能对比?改进A*算法融合DWA算法规避未知障碍物仿真。 算法经过创新改进,两套代码就是一篇lunwen完整的实验逻辑,可以拿来直接使用 改进A*算法做全局路径规划,融合动态窗口算法DWA做局部路径规划既可规避动态障碍物,又可与障碍物保持一定距离。 可根据自己的想法任意设置起点与终点,未知动态障碍物与未知静态障碍物。 地图可更改,可自行设置多种尺寸地图进行对比,包含单个算法的仿真结果及角速度线速度姿态位角的变化曲线,仿真图片丰富 绝对的高质量。 ,关键词:A*算法; 改进A*算法; 算法性能对比; 融合DWA; 局部路径规划; 全局路径规划; 障碍物规避; 地图设置; 仿真结果; 姿态位角变化曲线。,"改进A*算法与DWA融合:全局路径规划与动态障碍物规避仿真研究"
2025-05-09 00:18:58 898KB
1
人工智能 基于MATLAB实现传统图像去噪算法(均值滤波、中值滤波、非局部均值滤波NLM、三维块匹配滤波BM3D)和基于深度卷积神经网络的DnCNN图像去噪算法。 五种算法都是对Set12数据集进行去噪,去噪的结果并没有保存,只是在运行过程中能看到去噪前和去噪后的图像对比,感兴趣的朋友可以自己将图像保存下来观察。 随着数字图像处理技术的迅猛发展,图像去噪成为了一个热门的研究领域。在众多图像去噪算法中,传统算法因其简单、直观、易于实现而得到广泛应用。然而,随着深度学习技术的兴起,基于深度卷积神经网络的去噪算法开始崭露头角,尤其在处理含有复杂噪声的图像时显示出更大的优势。本篇文章将深入探讨基于MATLAB实现的传统图像去噪算法以及基于深度卷积神经网络的DnCNN图像去噪算法,并在Set12数据集上进行对比实验。 传统图像去噪算法主要包括均值滤波、中值滤波、非局部均值滤波(NLM)以及三维块匹配滤波(BM3D)。这些算法各有其特点和应用场景。 均值滤波是一种简单有效的线性滤波器,它通过将图像中每个像素点的值替换为其邻域内像素点值的平均数来实现去噪。这种方法适用于去除高斯噪声,但会模糊图像细节,因为它是基于局部像素平均信息来进行去噪的。 中值滤波是一种非线性滤波技术,它将每个像素点的值替换为其邻域内像素点值的中位数。中值滤波在去除椒盐噪声方面效果显著,因为它不受个别噪声点的影响,但在处理含有大量细节的图像时可能会损失部分细节信息。 非局部均值滤波(NLM)是一种基于图像块相似性的去噪算法,它利用图像中的冗余信息,通过寻找图像中与当前处理块相似的其他块的加权平均来完成去噪。NLM算法在去除噪声的同时能较好地保持图像边缘和细节,但计算量较大,处理速度较慢。 三维块匹配滤波(BM3D)是一种先进的图像去噪算法,通过分组相似的图像块,利用三维变换去除噪声。BM3D算法通过两次协同过滤实现高效的图像去噪,其性能往往优于其他传统算法,尤其是在处理较为复杂的噪声时。 然而,传统图像去噪算法在处理含有大量噪声或需要高度去噪保留图像细节的场景时,往往效果有限。随着深度学习技术的出现,基于深度卷积神经网络的图像去噪算法成为研究的热点。深度学习算法能够从大量带噪声的图像中自动学习到有效的特征表示,并用于去噪任务。 在本篇文章中,作者实现了基于深度卷积神经网络的DnCNN图像去噪算法,并在Set12数据集上进行了测试。DnCNN是一种端到端的深度神经网络结构,它通过逐层学习图像中的噪声模式,可以有效地从带噪声的图像中去除噪声,同时保持图像的清晰度和边缘细节。DnCNN算法在处理高斯噪声、泊松噪声以及混合噪声等方面都表现出色,是目前图像去噪领域的一个重要突破。 Set12数据集包含了多种类型的带噪声图像,包括自然场景、动物、植物等,非常适合用于测试不同去噪算法的性能。在实验中,作者并未保存去噪后的结果,而是提供了运行过程中的去噪前和去噪后的图像对比,使得读者可以在实验中直观地观察到算法效果。 通过在Set12数据集上对五种算法进行测试,我们可以观察到不同算法对于不同类型噪声的处理能力。传统算法在去除简单噪声时效果尚可,但在细节保持和复杂噪声处理方面往往不尽人意。而基于深度学习的DnCNN算法在这些方面表现更为出色,即便是在噪声水平较高的情况下也能保持较高的图像质量。 传统图像去噪算法和基于深度卷积神经网络的DnCNN图像去噪算法各有千秋,前者简单易实现,后者性能卓越。在实际应用中,可以根据具体需求选择合适的去噪方法。随着深度学习技术的不断进步,未来一定会有更多高效、鲁棒的去噪算法被开发出来,以满足人们对于高质量图像的需求。
2025-05-03 12:02:37 79.92MB MATLAB 图像去噪 去噪算法 深度学习
1
三相异步电机直接转矩控制DTC策略的Matlab Simulink仿真模型研究:PI转速控制与滞环转矩/磁链控制结合的传统策略分析,三相异步电机直接转矩控制DTC的Matlab Simulink仿真模型:涵盖PI控制、滞环控制及扇区判断等功能,三相异步电机直接转矩DTC控制 Matlab Simulink仿真模型(成品) 传统策略DTC 1.转速环采用PI控制 2.转矩环和磁链环采用滞环控制 3.含扇区判断、磁链观测、转矩控制、开关状态选择等. ,三相异步电机; DTC控制; Matlab Simulink仿真模型; 传统策略DTC; 转速环PI控制; 转矩环滞环控制; 扇区判断; 磁链观测; 转矩控制; 开关状态选择。,三相异步电机DTC控制策略的Matlab Simulink仿真模型研究
2025-04-21 16:54:55 2.33MB 数据结构
1
基于改进A*算法融合DWA算法的机器人路径规划MATLAB仿真程序(含注释) 包含传统A*算法与改进A*算法性能对比?改进A*算法融合DWA算法规避未知障碍物仿真。 改进A*算法做全局路径规划,融合动态窗口算法DWA做局部路径规划既可规避动态障碍物,又可与障碍物保持一定距离。 任意设置起点与终点,未知动态障碍物与未知静态障碍物。 地图可更改,可自行设置多种尺寸地图进行对比,包含单个算法的仿真结果及角速度线速度姿态位角的变化曲线,仿真图片丰富 在现代机器人技术研究领域中,路径规划算法是实现机器人自主导航与移动的关键技术之一。路径规划旨在使机器人从起点出发,通过合理的路径选择,避开障碍物,安全高效地到达终点。随着算法的不断发展,人们在传统的路径规划算法基础上提出了诸多改进方案,以期达到更好的规划效果。在这些方案中,改进的A*算法与动态窗口法(DWA)的结合成为了研究热点。 A*算法是一种广泛使用的启发式搜索算法,适用于静态环境下的路径规划。它基于启发信息估计从当前节点到目标节点的最佳路径,通过优先搜索成本最小的路径来达到目标。然而,A*算法在处理动态环境或者未知障碍物时存在局限性。为此,研究者们提出了改进A*算法,通过引入新的启发式函数或者优化搜索策略,以提升算法在复杂环境中的适应性和效率。 动态窗口法(DWA)则是一种局部路径规划算法,它通过在机器人当前速度空间中选取最优速度来避开动态障碍物。DWA通过评估在一定时间窗口内,机器人各个速度状态下的路径可行性以及与障碍物的距离,以避免碰撞并保持路径的最优性。然而,DWA算法通常不适用于长距离的全局路径规划,因为其只在局部窗口内进行搜索,可能会忽略全局路径信息。 将改进A*算法与DWA结合,可以充分利用两种算法的优势,实现对全局路径的规划以及对局部动态障碍物的即时响应。在这种融合策略下,改进A*算法用于全局路径的规划,设定机器人的起点和终点,同时考虑静态障碍物的影响。在全局路径的基础上,DWA算法对局部路径进行规划,实时调整机器人的运动状态,以避开动态障碍物。这种策略不仅保持了与障碍物的安全距离,还能有效应对动态环境中的复杂情况。 此外,该仿真程序还具备一些实用功能。用户可以自行设定地图尺寸和障碍物类型,无论是未知的动态障碍物还是静态障碍物,仿真程序都能进行有效的路径规划。仿真结果会以曲线图的形式展现,包括角速度、线速度、姿态和位角的变化,同时提供了丰富的仿真图片,便于研究者分析和比较不同算法的性能。这些功能不仅提高了仿真程序的可用性,也增强了研究者对算法性能评估的直观理解。 改进A*算法与DWA算法的融合是机器人路径规划领域的一个重要进展。这种融合策略通过全局规划与局部调整相结合的方式,提升了机器人在复杂和动态环境中的导航能力,使得机器人能够更加智能化和自主化地完成任务。随着算法研究的不断深入和技术的不断进步,未来的机器人路径规划技术将会更加成熟和高效。
2025-04-14 15:03:42 2.89MB edge
1