C语言比较全面的经典源代码示例包含220个例子,包含: 002.运行多个源文件 011.模拟ATM(自动柜员机)界面 023.指向数组的指针 034.用“结构”统计学生成绩 044.冒泡排序 052.背包问题 054.链表操作(1) 064.哈夫曼编码 067.求解最优交通路径 074.K阶斐波那契序列 086.爱因斯坦的数学题 095.奇数平方的有趣性质 103.兔子产子(菲波那契数列) 108.递归整数四则运算 113.实矩阵乘法运算 115.n阶方阵求逆 122.绘制圆弧 128.金刚石图案 136.绘制正多边形 138.正方形螺旋拼块图案 144.绘制布朗运动曲线 147.VGA256色模式编程 152.利用图形页实现动画 155.读取DOS系统中的国家信息 165.获取BIOS设备列表 167.备份恢复硬盘分区表 168.设计口令程序 170.水果拼盘 173.求解符号方程 181.求解三角方程 184.奇数方差 185.统计选票 190.统计最高成绩 195.括号匹配 207.商人过河游戏 216.五子棋游戏 219.图书管理系统 220.进销存管理系统 等示例具体看源码
2025-09-13 20:15:18 3.42MB
1
NS2仿真实验-多媒体和无线网络通信书中的各章节例子(源代码),完整版本。
2025-09-13 16:09:11 49.07MB
1
《HP-Socket 5.5.1 中文模块详解及应用实例》 在IT领域,网络通信是不可或缺的一部分,而HP-Socket作为一款强大的网络通信组件,为开发者提供了丰富的功能和便捷的接口。本文将围绕“HP-Socket 5.5.1中文模块”进行深入解析,包括其主要特性、汉化后的中文参数以及提供的示例,帮助易语言用户更好地理解和应用这个工具。 HP-Socket 5.5.1 是一款适用于易语言的网络编程组件,其最新版本引入了中文参数,大大降低了非英语背景用户的使用门槛。该模块支持多种网络协议,如TCP/IP、UDP等,可广泛应用于服务器开发、客户端应用以及多线程通信场景。 我们来关注一下汉化部分。之前的版本中,参数说明多为英文,对于中文用户来说,理解和使用可能存在一定的困扰。但在5.5.1版本中,参数已经全部汉化,使得开发者能更直观地理解每个函数的作用和参数含义,提高了开发效率。例如,“建立连接”、“发送数据”等关键操作的参数,现在都以中文形式呈现,使得代码编写更为流畅。 示例代码的提供也是此版本的一大亮点。“客户端3.e”和“服务端3.e”这两个示例程序,为开发者展示了如何使用HP-Socket进行基本的客户端和服务端通信。通过运行和分析这些例子,开发者可以快速掌握HP-Socket的基本用法,如创建套接字、监听端口、接收和发送数据等操作。这对于初学者来说,是非常宝贵的实践资源。 此外,“HP_Socket5.5.1-汉化.ec”文件是HP-Socket组件的核心,包含了所有汉化的类库和函数,开发者可以通过导入这个库文件,轻松地在易语言项目中调用HP-Socket的相关功能。而“ssl-cert”可能涉及到SSL/TLS安全证书,这表明HP-Socket还支持加密通信,确保数据在传输过程中的安全性。 总结起来,HP-Socket 5.5.1 中文模块不仅提供了全中文的参数,简化了理解和使用,还附带了示例代码,有助于开发者快速上手。同时,其对SSL/TLS的支持,保证了在网络通信中的数据安全。对于从事易语言开发的程序员,这款组件无疑是一个强大且友好的工具,值得深入研究和应用。在实际开发中,结合这些特点,我们可以构建高效、稳定的网络应用程序,满足各种复杂的业务需求。
2025-09-06 15:07:43 1.1MB 高级教程源码
1
在计算机图形学和三维渲染领域中,QT 3D是一个强大的工具,它允许开发者创建高质量的3D视觉效果和交互式体验。QT 3D显示例子加上QML加载的方式,提供了一种便捷的途径来展示如何在QT框架下实现3D场景的构建与交互。 QML,即Qt Modeling Language,是一种用于构建动态用户界面的声明式编程语言。它支持基于场景的图形描述,并且可以用于构建复杂的用户界面。通过QML,开发者能够以一种简洁明了的方式编写和布局用户界面元素,包括2D和3D图形。 当我们谈论“QT 3D显示例子+qml加载”,实际上是在讨论如何通过QML文件来加载和展示3D模型和场景。QML文件提供了一种高效且直观的方法来定义3D对象的属性、动画和交互行为。这种组合利用QT的模块化设计,能够将复杂的3D渲染逻辑封装起来,从而让开发者更容易地实现3D功能,无需深入底层的图形API细节。 在进行QT 3D开发时,一个典型的工作流程可能包括:使用3D建模软件创建模型,导出为可以被QT 3D引擎识别的格式,然后在QML文件中通过指定的URI(统一资源标识符)引用这些模型。QML文件中可以定义光源、相机、材质以及其他视觉效果,以此来控制场景的渲染方式。此外,QML支持JavaScript作为脚本语言,开发者可以利用它来编写控制逻辑和响应用户的交互。 举例来说,在一个典型的QT 3D项目中,可能会有如下的QML代码片段,该片段描述了如何加载一个3D模型,并且为其设置一个旋转动画: ```javascript import QtQuick 2.0 import QtQuick.Window 2.0 import Qt3D.Core 2.0 import Qt3D.Render 2.0 Window { visible: true width: 640 height: 480 title: "3D Example with QML" Entity { id: rootEntity components: [ Camera { id: camera projectionType: CameraLens.PerspectiveProjection fieldOfView: 45 aspectRatio: 16 / 9 nearPlane: 0.1 farPlane: 1000 position: Qt.vector3d(0, 0, 400) }, // 其他3D组件 ] // 加载3D模型 Mesh { id: mesh source: "mymodel.obj" // 模型文件路径 } // 设置模型变换组件 Transform { id: transform translation: Qt.vector3d(0, 0, 0) } // 设置模型材质组件 PhongMaterial { id: material ambient: "#000" } // 将模型、变换和材质组合为实体 Entity { components: [mesh, transform, material] } // 定义旋转动画 NumberAnimation on rotation.x { from: 0 to: 360 duration: 2000 loops: Animation.Infinite } } // 其他QML组件和逻辑 } ``` 在上述代码中,我们创建了一个包含相机、模型、材质以及动画效果的3D场景。这里,`Mesh`组件负责加载3D模型,`Transform`组件定义了模型的位置、旋转和缩放,而`PhongMaterial`则负责描述模型的光照和阴影效果。`NumberAnimation`用于创建模型旋转的动画效果。 QT 3D的这种模块化和可扩展性使得它非常适合用于开发各种3D应用程序,从简单的视觉展示到复杂的游戏和模拟环境。利用QT 3D和QML的组合,开发者可以快速实现3D界面和体验,大大降低了3D应用开发的门槛。 此外,QT 3D还提供了场景管理、输入处理、碰撞检测等高级功能,以及对多线程渲染的支持,确保了渲染性能和效率。这些高级特性为开发者提供了更多实现复杂3D应用的可能。 QT 3D结合QML提供了一个强大的平台,用于创建交互式的3D应用程序。开发者可以通过声明式的QML语言轻松地定义和加载3D场景,同时利用QT 3D引擎的强大功能来实现高性能的渲染和复杂的交互。随着图形技术的不断发展和用户对视觉体验要求的提高,QT 3D和QML的组合将是一个值得深入学习和探索的领域。
2025-08-25 10:24:22 18KB QML
1
标题中的“一个Google Earth二次开发的例子(C#)”指的是使用C#编程语言对Google Earth进行的扩展和定制化开发。Google Earth是一款强大的虚拟地球仪软件,它允许用户浏览全球的卫星图像和地形数据。通过二次开发,我们可以利用其提供的API(应用程序接口)来创建自定义的插件或应用,实现特定的功能。 在描述中提到,“需要先安装google earth,然后才能执行”,这暗示了这个项目是一个依赖于Google Earth客户端的应用。开发者必须在本地计算机上安装Google Earth才能运行和测试这个二次开发的程序。这意味着开发环境通常包括Google Earth本身以及支持C#编程的集成开发环境(如Visual Studio)。 标签“Google Earth 开发”进一步明确了这个项目的核心主题,即利用Google Earth API进行开发。Google Earth API提供了丰富的功能,例如加载KML(Keyhole Markup Language)文件,显示地标、路径,以及交互式地控制视图等。开发者可以通过这些接口实现与Google Earth的深度集成,例如创建动态地图应用、地理数据分析工具或者游戏。 在压缩包子文件“GpsTrace”中,我们可以推测这是一个与GPS轨迹相关的应用或插件。GpsTrace可能是一个程序,用于读取、解析和展示GPS设备记录的轨迹数据。在Google Earth中,这样的应用可以将GPS数据以线或点的形式叠加到地球上,使得用户可以直观地看到他们的运动路径。开发者可能已经编写了C#代码来处理GPS数据,并将其与Google Earth API结合,以便在3D环境中显示轨迹。 在具体的开发过程中,C#程序员可能会使用.NET框架,尤其是Windows Forms或WPF(Windows Presentation Foundation)来构建用户界面。同时,他们还需要熟悉Google Earth API的使用,如KmlClass库,来生成和操作KML对象。开发过程中可能涉及的工作包括: 1. 数据解析:读取GPS设备的GPX或NMEA格式数据,并转换为适合Google Earth显示的格式。 2. KML生成:使用C#编写代码,生成包含轨迹点的KML文档。 3. Google Earth交互:调用Google Earth API,将KML文档加载到Google Earth中,实现轨迹的动态显示。 4. 用户交互:设计并实现用户界面,允许用户选择、播放、暂停、保存或清除轨迹。 5. 错误处理和调试:确保程序能够正确处理各种异常情况,并提供友好的错误提示。 通过这样的二次开发,用户不仅可以查看静态的地图,还可以实时追踪和分析GPS数据,为户外活动、导航、地理研究等领域带来便利。对于学习和理解Google Earth API以及C#编程的人来说,这是一个有价值的实践项目。
2025-08-25 10:12:27 67KB Google Earth
1
双色球历史数据分析是彩票爱好者和开发者经常进行的一项工作,以探索潜在的中奖规律或构建预测模型。在这个例子中,我们看到一个基于Delphi XE10.2的项目,该版本是Embarcadero公司的集成开发环境(IDE)为Windows 10操作系统设计的。Delphi是一款强大的面向对象的编程语言,它使用Pascal语法,以其高效的编译器和VCL(Visual Component Library)框架而闻名。 这个项目的核心在于如何处理和分析双色球的历史数据。双色球是一种中国流行的彩票游戏,其玩法是选取6个红球(范围从1到33)和1个蓝球(范围从1到16)。历史数据通常包括每期开奖的红球和蓝球号码,以及相关的开奖结果。 在Delphi中,开发者可能使用各种数据结构(如数组、列表或数据库)来存储这些历史数据。例如,可以创建一个包含红球和蓝球数字的自定义记录类型,然后用数组存储每期的结果。此外,可能使用TStringList或其他容器类来存储和处理文本文件中的数据,这些文件通常是从彩票官方网站下载的CSV或TXT格式。 源码中可能涉及以下几个关键知识点: 1. 文件I/O:解析和读取历史数据文件,这可能涉及到使用`TFile`和`TStream`类,或者更传统的`TextFile`处理。 2. 数据处理:对数据进行预处理,如排序、去重,或者统计各数字出现的频率。 3. 数学统计:应用概率论和统计学的方法,如频率分析、平均值、中位数、众数等,来分析数据的分布。 4. 数据可视化:使用VCL组件如`TChart`,将分析结果以图表的形式展示出来,帮助用户直观地理解数据。 5. GUI设计:利用Delphi的VCL库创建用户界面,包括按钮、列表框、表格控件等,使得用户能够方便地查看和操作数据。 6. 软件工程:良好的代码组织和注释,遵循面向对象编程的原则,使用类和对象来封装功能。 7. 异常处理:添加错误处理机制,确保程序在遇到异常情况时能够优雅地退出或提示用户。 8. 数据库连接:如果数据量较大,可能会使用SQL数据库如SQLite或Firebird来存储数据,这时就需要实现数据库连接和查询。 这个项目对于学习Delphi编程、数据处理和彩票数据分析的初学者来说,是一个很好的实践案例。通过研究源码,可以了解如何在Delphi中实现这些功能,同时也能加深对数据处理和分析的理解。对于经验丰富的开发者,此项目可作为快速开发类似应用的起点,只需要根据实际需求进行修改和扩展。
2025-08-24 21:47:21 2.99MB 历史数据 Delphi源码
1
生产者-消费者(producer-consumer)问题,也称作有界缓冲区(bounded-buffer)问题,两个进程共享一个公共的固定大小的缓冲区。下文通过实例给大家介绍java生产者和消费者,感兴趣的朋友一起学习吧 在Java编程中,生产者-消费者问题是多线程并发控制的经典案例,主要涉及线程间的协作与同步。这个问题描述的是两个或多个线程共享一个有限的资源,如一个固定大小的缓冲区。在这个例子中,生产者线程负责生成数据并放入缓冲区,而消费者线程则负责从缓冲区取出数据并处理。为了保证数据的一致性和避免线程间的竞争条件,我们需要使用特定的同步机制,如Java中的`synchronized`关键字和`wait()`、`notify()`方法。 在Java中,我们可以创建一个公共资源类,如`PublicResource`,它包含一个共享变量`number`来表示缓冲区的状态。这个类提供了两个关键的方法:`increace()`用于增加`number`的值,代表生产操作;`decreace()`用于减少`number`的值,代表消费操作。由于多个线程可能会同时访问这些方法,因此需要使用`synchronized`关键字来确保同一时间只有一个线程能执行这些操作。 在`increace()`和`decreace()`方法中,我们使用了`wait()`和`notify()`来实现线程间的通信。当缓冲区满时,生产者会调用`wait()`进入等待状态,直到消费者消费了数据并调用`notify()`唤醒生产者。反之,当缓冲区为空时,消费者会等待,直到生产者生产了新的数据并唤醒消费者。这种机制可以防止生产者在缓冲区已满时继续生产,以及消费者在缓冲区为空时继续消费,有效地解决了生产者-消费者问题。 以下是如何创建生产者和消费者线程的示例: ```java // 生产者线程类 public class ProducerThread implements Runnable { private PublicResource resource; public ProducerThread(PublicResource resource) { this.resource = resource; } @Override public void run() { for (int i = 0; i < 10; i++) { try { Thread.sleep((long) (Math.random() * 1000)); // 模拟生产延迟 } catch (InterruptedException e) { e.printStackTrace(); } resource.increace(); } } } // 消费者线程类 public class ConsumerThread implements Runnable { private PublicResource resource; public ConsumerThread(PublicResource resource) { this.resource = resource; } @Override public void run() { for (int i = 0; i < 10; i++) { try { Thread.sleep((long) (Math.random() * 1000)); // 模拟消费延迟 } catch (InterruptedException e) { e.printStackTrace(); } resource.decreace(); } } } ``` 在上述代码中,`ProducerThread`和`ConsumerThread`实现了`Runnable`接口,它们在各自的`run()`方法中调用了`increace()`或`decreace()`方法。通过设置不同的延迟,我们可以模拟生产者和消费者在不同时间进行操作的情况。 总结来说,Java中的生产者-消费者问题可以通过共享资源类、`synchronized`关键字、`wait()`和`notify()`方法来解决。这样的设计允许线程之间协调工作,避免了数据不一致性和死锁等问题,有效地提高了多线程环境下的程序效率和可靠性。在实际开发中,我们还可以考虑使用`BlockingQueue`等高级并发工具来简化实现,提高代码的可读性和可维护性。
1
在工业自动化领域,PLC(Programmable Logic Controller)与上位机的通讯能力是实现高效控制的关键。本文将详细探讨欧姆龙PLC如何利用CIP(Common Industrial Protocol)协议与LabVIEW(Laboratory Virtual Instrument Engineering Workbench)进行通讯,并读取与写入参数的实例。 欧姆龙PLC支持多种通讯协议,其中CIP是一种广泛使用的工业以太网协议,它在Omron的网络架构中扮演着核心角色。CIP不仅用于PLC间的通讯,还能连接各种设备如人机界面(HMI)、伺服驱动器等。CIP具有高效、可靠且可扩展的特点,能处理复杂的数据交换需求。 LabVIEW是由美国国家仪器公司(NI)开发的一种图形化编程环境,特别适合于数据采集、控制和测试应用。通过CIP,LabVIEW可以直接与欧姆龙PLC建立连接,进行实时数据交互,实现对PLC程序的监控和控制。 在实现欧姆龙PLC与LabVIEW的通讯时,我们需要以下步骤: 1. **配置PLC网络**:确保PLC已正确配置了CIP通讯参数,如IP地址、子网掩码和网关。这通常在PLC的编程软件中完成,例如欧姆龙的CX-Programmer。 2. **创建LabVIEW工程**:在LabVIEW中新建一个工程,选择“工业网络”库,然后添加“CIP”驱动。设置正确的设备地址和通讯参数,以便LabVIEW能识别到PLC。 3. **编写通讯VI**:使用LabVIEW的CIP函数创建虚拟仪器(VI)来读取和写入PLC的寄存器或数据点。这可能包括“CIP建立连接”、“CIP发送消息”和“CIP接收消息”等函数。 4. **定义数据结构**:根据欧姆龙PLC的编程结构,定义要读写的参数数据结构。例如,如果要读取PLC的输入/输出点,需要知道它们在PLC内存中的地址和数据类型。 5. **读取与写入操作**:通过调用LabVIEW中的CIP函数,向PLC发送读取或写入请求。读取操作会将PLC的数据返回到LabVIEW,而写入操作则会将LabVIEW的数据传输到PLC。 6. **错误处理**:为确保程序的稳定运行,必须包含适当的错误处理机制,如检查通讯状态、处理超时和重试策略。 7. **测试与调试**:使用LabVIEW的调试工具,对通讯VI进行测试,验证数据的正确读取和写入。 在提供的压缩包文件中,"test.smc2"可能是CX-Programmer项目文件,包含了PLC的编程逻辑和网络配置信息。而"mylab"可能是LabVIEW的一个工程文件,包含了与PLC通讯的VI。为了进一步了解这个例子,你需要使用相应的软件打开这两个文件,查看具体的编程细节和逻辑。 总结来说,通过CIP协议,LabVIEW可以方便地与欧姆龙PLC进行通讯,实现参数的读取和写入,这对于自动化系统的设计和调试至关重要。理解这一过程有助于提升工业自动化系统的效率和灵活性。
2025-08-21 10:28:42 3.5MB
1
WPF简要制作浏览器 WPF中使用WebView2控件 WPF 应用中的 WebView2 WPF集成WebView2 完整例子及Demo c#使用WebView2例子
2025-08-19 13:17:10 228.49MB
1
易语言是一种专为中国人设计的编程语言,它以简明的中文语法,降低了编程的门槛。在本案例中,我们关注的是"易语言gdip模块生成图片例子",这是一个使用易语言结合GDIP(GDI+)库创建图像的示例。GDIP是微软Windows平台上的一个图形设备接口,它提供了丰富的图形绘制功能,如绘制线条、形状、文本以及处理图像等。 让我们了解GDIP的基本概念。GDIP全称为Graphics Device Interface Plus,它是GDI(Graphics Device Interface)的增强版,提供了一套面向对象的API,使得开发者能够更方便地进行图形操作。GDIP支持矢量图形和位图,可以进行高精度的图像渲染和处理,包括色彩管理、透明度调整、滤镜效果等。 在易语言中使用GDIP模块,你需要先引入这个模块,然后就可以调用其中的函数来创建、绘制和保存图像。例如,你可以使用`CreateGraphics`函数创建一个图形上下文,然后通过`DrawString`方法在图像上绘制文本,`DrawImage`方法绘制子图像,`FillRectangle`方法填充矩形等。这些函数都是基于C++的GDI+ API封装的,但在易语言中以中文形式表示,更加直观易懂。 易语言gdip模块的使用通常包括以下几个步骤: 1. 初始化:加载GDIP模块,初始化必要的资源,如图像内存缓冲区。 2. 创建图形对象:创建`Graphics`对象,这是绘图的主要接口。 3. 绘制:使用`Graphics`对象提供的方法绘制图形、文本、图像等。 4. 渲染:将绘制的结果渲染到目标设备,如屏幕或文件。 5. 清理:释放使用过的资源,关闭图形对象。 描述中提到,这个例子几乎涵盖了如何使用GDIP模块的基本操作,可以帮助学习者理解如何在易语言中进行图像生成和合成。通过对这个例子的学习,你可以掌握如何在图片上画字和合并图片,这对于开发需要图形界面的应用程序,或者需要进行图像处理的项目来说是非常基础且重要的技能。 在压缩包中的"易语言gdip模块生成图片例子"文件,很可能是包含源代码的文件,打开后可以查看具体的实现细节,通过阅读和分析代码,可以加深对GDIP模块在易语言中应用的理解。同时,也可以尝试修改代码,增加新的功能,以进一步提高自己的编程能力。 易语言gdip模块是易语言中用于图形图像处理的重要工具,通过这个例子,学习者可以了解到如何在易语言环境中利用GDIP进行图像的绘制和合成,这对于提升易语言编程的实践能力和图像处理技能大有裨益。
2025-08-11 23:30:13 236KB 图形图像源码
1