在IT行业中,图像标注是人工智能领域的一个重要环节,特别是对于计算机视觉任务,如目标检测、图像识别等。基于labelImg的二次开发是为了提高标注效率和精度,满足更复杂的场景需求。LabelImg是一款开源的图像标注工具,原生支持XML格式的边界框(bbox)标注,而本次的二次开发则增加了更多实用功能,比如处理 bbox 的截断和遮挡情况,以及便捷的文件管理操作。 1. **标注bbox的截断和遮挡**: 在实际应用场景中,物体可能只有一部分出现在图像中,或者被其他物体遮挡。这种情况下,传统的完整bbox标注方式会失去准确性。二次开发的labelImg新增了对截断和遮挡的处理能力,意味着标注者可以标记出物体的实际边界,即使它们超出图像边界或被遮挡。这对于训练模型理解和推理真实世界中的不完全信息至关重要。 2. **删除当前图像和标签文件**: 原版的labelImg可能需要用户手动管理标注文件,而二次开发版本提供了一键删除当前图像及其对应的标签文件的功能。这一改进极大地提高了标注工作的效率,减少了用户在文件管理上的时间消耗,使标注过程更为流畅。 3. **基于文件名进行快速查找标注图像**: 随着数据集的增大,查找特定图像进行标注或校对变得困难。二次开发的labelImg引入了文件名搜索功能,用户可以通过输入文件名的部分或全部信息,快速定位到需要的图像,提升了工作效率。 此外,这次的开发工作可能还涉及了以下技术: - **Python**:LabelImg是用Python语言编写的,因此二次开发也需要基于Python进行。Python的丰富库和易读性使其成为开发此类工具的理想选择。 - **Ubuntu**:虽然LabelImg可以在多种操作系统上运行,但提到了Ubuntu,可能意味着这个开发版本是在Ubuntu环境下优化或测试的,可能利用了Ubuntu的某些特性或工具。 - **数据标注**:这个过程是AI模型训练的关键步骤,通过人工或半自动的方式为图像添加描述性标签,帮助模型理解图像内容。 这些改进不仅方便了专业标注人员的工作,也为AI模型提供了更准确的训练数据,从而提高模型的性能。在AI发展的大潮中,高效的标注工具将推动计算机视觉技术的进步。
2025-05-24 12:50:12 6.79MB 图像标注 数据标注 人工智能 python
1
数据大小:24.01M 用来检测苹果,橘子,香蕉的数据集,包含3种水果的图片,(带有标注数据。) 300多张这三种水果的图片数据集 水果(苹果,橘子,香蕉)识别数据集 Fruit (apple, orange, banana) recognition data set
2025-05-05 17:09:56 24.01MB 数据集
1
数据集在IT行业中扮演着至关重要的角色,尤其是对于机器学习和人工智能领域。在这个特定的案例中,"上传备用营养缺乏草莓框选标注数据集"是一个专门为识别草莓营养缺乏问题而设计的数据集。这个数据集包含了草莓图像,这些图像被专业地标注了,以指示草莓可能存在的营养缺乏情况,如缺磷、缺钙、缺铁。这些标注帮助计算机模型学习如何区分不同营养状况下的草莓,进而可以自动检测和分析农作物的健康状况。 我们要理解数据集的组成部分。一个数据集通常包括两部分:原始数据和元数据。在这个例子中,原始数据是那些草莓图像,它们是模型训练的基础。元数据则包含了关于这些图像的附加信息,如图像的拍摄日期、位置,以及关键的标注信息——缺磷、缺钙、缺铁。这些标注是人工进行的,可能通过专家的视觉判断或者使用专业的化学分析来确定草莓的营养状况。 接下来,我们要讨论的是数据标注。在图像识别任务中,标注是关键步骤,它为机器学习算法提供了“真相”。在这里,每张图片都与特定的营养缺乏类型关联,这使得算法能够学习并理解每种营养缺乏状态的视觉特征。例如,缺磷的草莓可能显示为颜色暗淡,缺钙的草莓可能会有形状异常,而缺铁的草莓可能生长缓慢,叶子黄化。这些特征被精确地标记出来,以便算法能准确地学习和模仿。 在训练模型时,数据集通常会被分为训练集、验证集和测试集。训练集用于教会模型识别模式,验证集帮助调整模型参数,确保模型不会过拟合,而测试集则用来评估模型在未见过的数据上的表现。这个草莓数据集很可能是按照这样的方式划分的,尽管具体划分比例没有给出。 为了构建有效的图像识别模型,通常会使用深度学习技术,比如卷积神经网络(CNN)。CNN能够自动从图像中提取特征,通过多层非线性变换,逐渐理解和识别图像中的元素。在本例中,CNN可以学习到与营养缺乏相关的特征,并以此来预测新的草莓图像的营养状况。 此外,数据增强也是提高模型泛化能力的一个重要手段。通过对原始图像进行旋转、缩放、裁剪等操作,可以增加模型看到的图像多样性,使它在处理实际场景时更具鲁棒性。 模型的性能评估通常通过指标如准确率、召回率、F1分数等来进行。这些指标可以帮助我们了解模型在识别不同类别的营养缺乏情况时的效果,从而决定是否需要进一步优化模型。 这个"上传备用营养缺乏草莓框选标注数据集"是一个用于训练和评估农作物健康状况检测模型的重要资源。通过深度学习和适当的训练方法,我们可以构建出能有效识别草莓营养缺乏的智能系统,这对于精准农业、农作物健康管理具有极大的价值。
2025-04-07 09:07:02 39.68MB 数据集
1
猫狗人鼠带标注数据
2024-06-07 08:17:22 253B
1
Labelme是一个开源的图像标注工具,由麻省理工学院(MIT)开发。它是一个在线的JavaScript工具,可以在任何地方使用,无需在电脑中安装大型数据集。此外,Labelme也可以在PyCharm中运行,方便进行二次开发。Labelme的使用和二次开发涉及许多知识。比如,可以通过修改相应的.py文件来实现汉化,将界面上的英文菜单和提示信息改为中文。此外,Labelme的界面开发使用了图形开发工具QT Designer,这是一种可以集成到PyCharm中的工具,可以生成.ui文件并转换为.py文件,从而实现图形界面开发。在使用和研究Labelme的过程中,可能会遇到一些问题,例如转化为.exe文件时的路径不正确问题,需要根据提示信息修改程序路径;或者图片不能显示的问题,需要将图片转换为base64形式保存。这些都是PyInstaller需要完善的地方。总的来说,Labelme是一个强大的图像标注工具,适合在图像处理和机器学习等领域使用。 项目源地址:https://github.com/wkentaro/labelme/releases
2024-04-23 07:39:29 105.73MB javascript 开发工具 数据标注 数据集
1
1、资源内容:yolo数据增强、yolo已标注数据集增强、.txt格式数据集增强;包含旋转、平移、翻转、裁剪、调整亮度和增加噪声6中增强方式随 2、代码特点:内含运行结果,不会运行可私信,参数化编程、参数可方便更改、代码编程思路清晰、注释明细,都经过测试运行成功,功能ok的情况下才上传的。 3、适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。 4、作者介绍:某大厂资深算法工程师,从事Matlab、Python、C/C++、Java、YOLO算法仿真工作10年;擅长计算机视觉、 目标检测模型、智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、智能控制、路径规划、无人机等多种领域的算法仿真实验,更多源码,请上博主主页搜索。 -------------------------------------------------------------------------- -
2024-04-21 02:55:29 11KB 数据集
YOLOv5框架,将源码进行封装,并利用pyqt实现了训练+检测2个部分的界面功能。训练部分,从图片爬虫下载、数据标注、数据集配置到最后的训练;检测部分,从检测参数设置(支持实时设置置信度和IOU等)、数据选择(支持图片、视频和多种摄像头)到结果显示。全部实现界面开发和多线程调度处理。
2024-03-26 17:58:34 319.02MB pyqt 爬虫 数据集 yolov5
1
检测岸边钓鱼人员的数据集2,1000张项目数据集,已标注数据集,下载后可直接进行训练
2024-02-18 17:56:53 41.55MB fishing 目标检测 已标注数据集
红细胞完整标注(367个显微镜图像) 红细胞完整标注(367个显微镜图像) 红细胞完整标注(367个显微镜图像)
2022-10-22 22:05:34 7.44MB 数据集 红细胞 标注 深度学习
1
labelImg软件包,用于标注数据
2022-07-27 20:05:21 6.3MB 标注图片
1