球形文字嵌入 在NeurIPS 2019中发布的用于Spherical Text Embedding的源代码。代码结构(尤其是文件读取和保存功能)改编自。 要求 GCC编译器(用于编译源c文件):请参阅有关的。 预训练的嵌入 我们在上提供了经过预训练的JoSE嵌入。 与诸如Word2Vec和GloVe之类的欧几里德嵌入不同,球形嵌入不一定受益于高维空间,因此,首先从低维嵌入开始可能是一个好主意。 运行代码 我们提供了一个shell脚本run.sh来编译源文件和训练嵌入。 注意:在准备训练文本语料库时,请确保文件中的每一行都是一个文档/段落。 超参数 注:建议使用默认的超参数,尤其是阴性样品(数量-negative )和损失函数保证金( -margin )。 调用不带参数的命令以获得超参数及其含义的列表: $ ./src/jose Parameters: -train
2025-09-11 16:32:18 10.76MB word-embeddings unsupervised-learning
1
在现代计算机科学领域,尤其是自然语言处理和机器学习领域,Embedding模型已经成为不可或缺的技术之一。Embedding模型通常用于将离散的文本信息转换为连续的向量空间中的点,这些向量可以捕捉到文本中的语义信息,使得机器学习算法可以在此基础上进行有效的工作。例如,在文本分类、信息检索、推荐系统等任务中,Embedding模型都扮演着重要的角色。本压缩包所包含的内容主要聚焦于如何使用 Embedding 模型进行训练,提供了一套完整的训练代码及脚本,并支持两种不同数据类型:pair数据和triplet数据的训练方法。 pair数据训练方法是指在训练过程中,输入数据是由成对的样本组成。这种方法通常用于那些需要对样本之间的相似性进行建模的场景,例如,在某些推荐系统中,通过计算用户和物品之间的相似度来实现个性化推荐。在这类训练方法中,模型会尝试学习将相似的样本映射到嵌入空间中距离较近的点,不相似的样本则映射到距离较远的点。 另一方面,triplet数据训练方法则涉及三个样本,一个锚点样本、一个正样本和一个负样本。在训练过程中,模型的目标是使得锚点样本与正样本之间的距离小于与负样本之间的距离。这种训练方法常用于面部识别、图像检索等任务,因为它们需要在嵌入空间中区分出大量的类别。通过使用triplet训练方法,模型能够学习到更精细的特征表示,从而提高其在区分不同类别时的准确度。 该压缩包中的代码还包含了对logging和argparse的支持。Logging是一种记录程序运行信息的技术,它可以帮助开发者或数据科学家跟踪程序的运行状态,监控性能指标,快速定位问题,并在必要时进行调试。在Embedding模型训练过程中,使用logging能够记录模型的性能表现和训练进度,这对于模型的优化和迭代至关重要。而argparse则是一个用于处理命令行参数和选项的模块,它使得用户能够通过命令行来配置模型训练过程中的各种参数,如学习率、批次大小、迭代次数等,增强了脚本的灵活性和用户体验。 这个压缩包提供的 Embedding 模型训练代码及脚本,是机器学习和自然语言处理领域的宝贵资源。通过对两种不同的训练数据和方法的支持,以及对高级功能如logging和argparse的集成,该工具包为研究人员和工程师提供了方便、高效的模型训练能力,特别是在需要进行大规模实验和优化的时候。
2025-08-04 20:55:29 5KB
1
内容概要:本文详细介绍了RAG(检索增强生成)技术的核心思想、优点、缺点及其实现流程。RAG通过从外部知识库动态检索相关信息来增强大语言模型(LLM)的上下文,从而生成更准确、更真实的回答。其核心优势在于知识更新灵活、减少幻觉、高可追溯性和领域适配成本低。然而,RAG也面临依赖检索质量、系统复杂性和额外延迟等问题。文中还探讨了RAG的具体实现流程,包括加载文件、文本向量化、匹配相似文本和生成回答等步骤。此外,文章还介绍了向量检索与传统倒排索引的区别、Embedding的重要性、RAG的工作流程优化方法,以及RAG在不同场景下的应用优势。 适用人群:对自然语言处理、信息检索和大语言模型有一定了解的研究人员和工程师;希望深入了解RAG技术及其应用场景的从业者。 使用场景及目标:①需要实时更新知识的场景(如新闻、金融);②领域专业性强的任务(如医疗、法律);③需要提供可解释
1
BERT和RoBERTa在文本语义相似度等句子对的回归任务上,已经达到了SOTA的结果。但是,它们都需要把两个句子同时喂到网络中,这样会导致巨大的计算开销。这种结构使得BERT不适合语义相似度搜索,同样也不适合无监督任务(例如:聚类)。Sentence-BERT(SBERT)网络利用孪生网络和三胞胎网络结构生成具有语义意义的句子embedding向量,语义相近的句子其embedding向量距离就比较近,从而可以用来进行相似度计算(余弦相似度、曼哈顿距离、欧式距离)。这样SBERT可以完成某些新的特定任务,例如相似度对比、聚类、基于语义的信息检索。
2025-04-27 16:39:58 30.17MB bert 文本相似度 embedding
1
tencent-ailab-embedding-zh-d200-v0.2.0 原始40G的数据二进制转换文件,使用需要大量内存.
2025-04-08 16:27:38 391.85MB
1
基于PyTorch的Embedding和LSTM的自动写诗实验LSTM (Long Short-Term Memory) 是一种特殊的循环神经网络(RNN)架构,用于处理具有长期依赖关系的序列数据。传统的RNN在处理长序列时往往会遇到梯度消失或梯度爆炸的问题,导致无法有效地捕捉长期依赖。LSTM通过引入门控机制(Gating Mechanism)和记忆单元(Memory Cell)来克服这些问题。 以下是LSTM的基本结构和主要组件: 记忆单元(Memory Cell):记忆单元是LSTM的核心,用于存储长期信息。它像一个传送带一样,在整个链上运行,只有一些小的线性交互。信息很容易地在其上保持不变。 输入门(Input Gate):输入门决定了哪些新的信息会被加入到记忆单元中。它由当前时刻的输入和上一时刻的隐藏状态共同决定。 遗忘门(Forget Gate):遗忘门决定了哪些信息会从记忆单元中被丢弃或遗忘。它也由当前时刻的输入和上一时刻的隐藏状态共同决定。 输出门(Output Gate):输出门决定了哪些信息会从记忆单元中输出到当前时刻的隐藏状态中。同样地,它也由当前时刻的输入和上一时刻的隐藏状态共同决定。 LSTM的计算过程可以大致描述为: 通过遗忘门决定从记忆单元中丢弃哪些信息。 通过输入门决定哪些新的信息会被加入到记忆单元中。 更新记忆单元的状态。 通过输出门决定哪些信息会从记忆单元中输出到当前时刻的隐藏状态中。 由于LSTM能够有效地处理长期依赖关系,它在许多序列建模任务中都取得了很好的效果,如语音识别、文本生成、机器翻译、时序预测等。
2025-04-06 18:44:18 5.68MB
1
tencent-ailab-embedding-zh-d200-v0.2.0-s.txt 对应的二进制文件,在win11上编译,体积小且可以正常运行的
2024-11-13 19:37:14 61.1MB
1
深入PHP内核及扩展开发英文chm Extending.and.Embedding.PHP
2023-12-13 09:04:46 864KB Extending.and.Embedding.PHP
1
通往php之路的web高手必看之书,本人在研究了,如果你有兴趣就下来看看吧! 《advance php programming》 这本书是指导php开发的,注重实践,要有点C基础, 《extending and embedding php》 这本书是分析php源码,教你写扩展的,比较低层。 两本都是sams出版的极品,已转成PDF方便打印, 是英文版的,看清楚,原计原味噢 - -!
2023-10-11 09:01:29 6.67MB advance php programming extending
1
TriDNR 三方深度网络表示形式,发布于IJCAI 2016:1895-1901。 这些代码实现了TriDNR算法,该算法学习网络中每个节点的连续表示。 TriDNR从三个角度使用信息,包括节点结构,节点内容和节点标签(如果有),以共同学习最佳节点表示形式 该代码是使用gensim和DeepWalk软件包在Python中开发的。 所有必需的软件包都在requirements.txt中定义。 要安装所有要求,只需使用以下命令: pip install -r requirements.txt “ demo.py”中提供了一个演示,该演示运行并比较了几种算法 关于数据集:本文中有两个网络数据集,即DBLP和Citeseer-M10。 每个数据集包含3个文件: 1. docs.txt : title information of each node in a network, each
2023-02-25 14:46:19 2.52MB graph network-embedding graph-embedding Python
1