高光谱图像数据集是包含高光谱图像信息的集合,这些图像数据集广泛应用于遥感、农业、地质勘探、环境监测等多个领域。高光谱成像技术是一种可以获取物体反射或发射光谱信息的高分辨率光谱成像技术。它能够捕捉到从可见光到近红外或短波红外波段范围内成百上千的连续窄波段图像,每个波段对应于光谱的一个特定波长。与传统的多光谱图像相比,高光谱图像具有更高的光谱分辨率,因此能够提供更为丰富和详细的物体表面或内部的材料组成信息。 高光谱图像数据集的建立通常需要经过复杂的采集和预处理过程,包括从成像系统获取原始图像数据、校正图像数据中的畸变、对图像进行大气校正、去除噪声、进行光谱重采样等步骤。这些数据集通常包含了丰富的地面真实信息,是进行图像分析、分类、目标识别和提取等研究的重要基础资源。研究人员可以通过分析这些数据集中的光谱特征,结合地物光谱库进行比较,识别出图像中的不同地物类型,如植被、水体、土壤、建筑物等。 在处理高光谱图像数据集时,常用的算法包括主成分分析(PCA)、独立成分分析(ICA)、最小噪声分离(MNF)、支持向量机(SVM)、随机森林等。这些算法旨在降低数据的维度,提取有效的特征,实现对图像的有效分类和识别。同时,随着机器学习和深度学习技术的发展,基于卷积神经网络(CNN)的图像处理方法也被广泛应用于高光谱图像的特征提取和目标检测中。 高光谱图像数据集的典型应用场景包括农作物的种植监测、资源勘探、土地利用分类、环境影响评估等。例如,在农业领域,高光谱图像能够通过分析作物的反射光谱来评估作物的健康状况和养分含量,辅助农民进行精准农业管理。在资源勘探中,通过高光谱图像可以探测地下矿藏的分布情况。在环境监测中,可以用于监测污染物的扩散情况和生态系统的健康状况。 为了提高高光谱图像数据集的质量和应用价值,研究者还在不断探索如何将高光谱成像技术与其他传感器技术结合起来,例如与激光雷达(LiDAR)技术的融合,可以提供更为准确的地物三维信息。同时,随着空间分辨率和光谱分辨率的不断提高,高光谱图像数据集也在变得越来越大,这对数据存储、传输和处理技术提出了更高的要求。 高光谱图像数据集的研究和应用不仅推动了遥感科学的发展,也为地球科学、农业科学、环境科学、材料科学等众多学科提供了强大的数据支持和分析工具。随着技术的进步,高光谱图像数据集的采集和应用将会更加广泛和深入,其在科学研究和实际应用中的重要性也将不断增长。
2025-08-19 16:19:04 342.06MB 高光谱图像 Hyperspectral
1
高光谱图像小目标检测的一篇英文文献,耿修瑞和赵永超发表的。阐述了小目标检测的原理
2023-05-17 17:22:25 1.38MB target detection
1
高光谱分解 卷积神经网络的高光谱图像分解(无分叉,半成品) 说明 先决条件 Python 3.8 TensorFlow 2.3.0 建议使用conda创建虚拟环境并使用以下命令安装依赖项: pip install -r requirements.txt 用法 在设置参数后,在终端中输入以下命令: python run.py 更多细节: 使用python run.py -h获取更多参数设置详细信息。 数据集 我们提供了两个处理后的数据集:数据集中的Jasper Ridge(jasper),Urban(urban)/ data.npy:高光谱数据文件。 data_gt.npy:基本事实文件。 data_m.npy:端成员文件。 更新:2021年2月10日
2023-02-28 16:03:11 21.01MB hyperspectral-image hyperspectral-unmixing Python
1
hsdar软件包包含用于管理,分析和模拟高光谱数据的类和函数。 这些可能是通过rgdal界面进行的光谱仪测量或高光谱图像。
2023-02-24 06:49:39 3.73MB 开源软件
1
这是论文《Gaussian Pyramid Based Multiscale Feature Fusion for Hyperspectral Image Classification, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(9), 3312-3324》的代码,更多详情可在纸上找到。 如果你使用这个演示,请引用这篇论文。 要运行此演示,您应该先下载 libsvm-3.20。 libsvm-3.20可从https://www.csie.ntu.edu.tw/~cjlin/libsvm/获得
2022-11-30 20:39:24 11.4MB matlab
1
这是论文“Density Peak Clustering-based Noisy Label Detection for Hyperspectral Image Classification, IEEE Transactions on Geoscience and Remote Sensing, 2018, (Accepted)”的代码,更多细节可以在论文中找到。 如果你使用这个演示,请引用这篇论文。 要运行此演示,您应该先下载 libsvm-3.22。 libsvm-3.22 可在https://www.csie.ntu.edu.tw/~cjlin/libsvm/ 获得
2022-11-30 10:29:35 9KB matlab
1
这是论文“PCA based Edge-preserving Features for Hyperspectral Image Classification, IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12), 7140-7151.”的代码,更多细节可以在论文中找到。 如果你使用这个演示,请引用这篇论文。 要运行此演示,您应该先下载 libsvm-3.22。 libsvm-3.22 可在https://www.csie.ntu.edu.tw/~cjlin/libsvm/ 获得
2022-11-19 19:43:23 5.73MB matlab
1
高光谱图像(HSI)通常在采集过程中由于各种噪声的混合而降低质量,这些噪声可能包括高斯噪声,脉冲噪声,虚线,条纹等。 本文介绍了一种基于低秩矩阵恢复(LRMR)的HSI恢复新方法,该方法可以同时去除高斯噪声,脉冲噪声,死线和条纹。 通过按字典顺序将HSI的补丁排序为二维矩阵,可以探索高光谱图像的低秩属性,这表明干净的HSI补丁可以视为低秩矩阵。 然后,我们将HSI恢复问题公式化为LRMR框架。 为了进一步消除混合噪声,应用了“分解”算法来解决LRMR问题。 在模拟和真实数据条件下都进行了一些实验,以验证所提出的基于LRMR的HSI恢复方法的性能。
2022-07-23 22:34:24 1.5MB Go Decomposition (GoDec); hyperspectral
1
idw算法matlab代码基于正则化子空间方法和协同表示的高光谱影像异常检测 这是用于高光谱异常检测的 matlab 代码(LSAD-CR-IDW 和 LSUNRSORAD 算法) 有关该项目的更多信息,请参阅我们的论文: 【共同第一作者】 先决条件: matlab R2018b 其他相关论文: [1]tanh坤,苏增福侯,Dongelei马云,虞陈,钱渡。 [J]. 遥感, 2019, 11(13): 1578. [共同第一作者] [2]侯苏增福,李炜,Lianru高,张冰,马Pengge和君临太阳。 (2020) [口头] [3]侯苏增福,李炜,陶然,Pengge马和石蔚华。 [J]. 中国科学信息科学。 2020。 [4] 刘军,侯增福,李伟,冉涛,达尼洛·奥兰多,李洪斌。 [J]. IEEE 神经网络和学习系统汇刊,doi:10.1109/TNNLS.2021.3071026。 [第二作者] 我的个人网站: 1.Github网站: 2.CSDN中文博客: 接触: 电子邮件:
2022-06-21 16:00:56 15.83MB 系统开源
1