因工作需要,从厂家要来的,给需要的人用
2025-08-01 22:51:55 702KB
1
固高GTS运动控制卡C#三轴点胶机样本程序源代码及二次开发手册参考,固高GTS运动控制卡C#三轴点胶机样本程序源代码及二次开发手册参考,固高GTS运动控制卡,C#语言三轴点胶机样本程序源代码,使用 的是固高GTS-800 8轴运动控制卡。 资料齐全,3轴点胶机样本程序,还有操作手册及各种C#事例程序,适合自己参照做二次开发,GTS-400的四轴运动控制卡是一样使用。 ,固高GTS运动控制卡;C#语言三轴点胶机样本程序源代码;操作手册及事例程序;二次开发;GTS-800;GTS-400。,固高GTS运动控制卡C#三轴点胶机程序开发指南
2025-08-01 15:48:13 3.11MB
1
SD卡升级stm32固件是指利用SD卡作为中介存储介质,在单片机stm32上电之前,通过插入SD卡来识别卡内的bin文件,并利用该文件对stm32的程序进行升级的过程。SD卡IAP(In-Application Programming)技术允许在单片机应用运行中直接对flash存储器进行编程,这样可以在不借助外部编程器的情况下,对设备进行固件更新。这种技术在嵌入式系统中非常实用,尤其是当设备部署在不易接触或需要远程更新固件的场景中。 在实施SD卡升级固件的过程中,首先需要在SD卡中存放特定格式的bin文件,该文件包含了stm32的新程序代码。为了确保升级过程的稳定性和安全性,bin文件通常会进行特定的格式化处理,包括但不限于校验码计算、分块存储等。在stm32单片机设计中,通常会内置一个引导加载程序(Bootloader),这个程序负责在设备上电后,首先执行SD卡检测和bin文件读取等操作,然后将bin文件中的新固件代码写入到单片机的flash存储器中。这一过程需要特别注意的是对SD卡的兼容性、对bin文件的正确解析以及对flash存储器的正确写入。 SD卡升级固件的技术不仅适用于单个设备的升级,还可以用于设备集群的批量升级。开发者可以为不同型号的stm32单片机开发相应的Bootloader,并准备相应的bin文件,通过这种方法可以同时更新多个设备的固件。因此,SD卡升级固件在远程维护、功能迭代以及故障处理方面都显示出了巨大的优势。 然而,SD卡升级固件也存在一些潜在的风险。错误的固件升级有可能导致设备无法启动或功能异常。因此,必须在设计时考虑固件升级的健壮性,比如提供回退机制、使用可靠的通信协议和校验机制等。同时,在实际操作中,还需要考虑用户的操作习惯,例如通过设置操作提示和步骤指引,减少用户误操作的可能性。 为了实现SD卡固件升级,开发者通常需要编写相应的程序代码来处理SD卡的识别、bin文件的读取和解析以及将程序代码写入flash存储器的过程。在stm32单片机中,这通常涉及对HAL库(硬件抽象层库)和底层寄存器的操作。开发者需要熟悉stm32的硬件架构和SD卡的相关接口标准,以及了解如何在stm32上编写和编译程序。 SD卡升级固件的过程,实际上是嵌入式系统开发中的一项综合性技术,它不仅考验了开发者的软件编程能力,还涉及到对硬件接口、数据通信以及系统架构的理解和应用。通过这种方式升级固件,不仅可以简化维护流程,还能提高产品的可靠性和用户满意度。
2025-07-30 22:55:04 13.28MB 单片机升级 SD卡升级
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-07-29 23:41:06 3.2MB matlab
1
刮刮卡vue组件,可在PC或移动端使用
2025-07-28 22:14:22 86KB JavaScript开发-Vue.js相关
1
线刷转卡刷打包工具是一个能够将线刷包转换为卡刷包的软件工具。它通常被用于Android手机固件开发和维护领域,尤其是在智能手机的刷机过程中。这种工具的主要作用是将基于USB驱动的线刷包(通常使用Fastboot、ODIN等工具刷写)转换成能够在Android操作系统下通过Recovery模式进行刷写的卡刷包。通过这种方式,用户可以更为方便地更新手机固件,而不需要连接到电脑或者使用特定的刷机工具。 在Android刷机的过程中,线刷和卡刷是两种常见的方法。线刷是指通过数据线连接电脑,使用特定的软件工具(如小米的MiFlash工具、华为的HiSuite工具)来刷新设备的固件。而卡刷则是将固件包放到SD卡或者内置存储中,然后在Recovery模式下直接对手机进行刷写。卡刷通常更为简单便捷,用户只需关机后同时按住特定的按键组合进入Recovery模式,然后选择刷机包进行安装即可。 使用线刷转卡刷打包工具的过程通常涉及几个关键步骤,首先是提取线刷包中的固件文件,然后对这些文件进行打包处理,最后生成可以在Recovery模式下使用的卡刷包。这个过程中可能会涉及到文件的解压、修改、重组等操作,因此工具的开发者需要具备深厚的Android系统知识和编程技能。 值得注意的是,线刷转卡刷打包工具并不是一个通用的工具,不同的手机品牌和型号可能需要不同的工具或者方法来进行转换。此外,使用此类工具进行刷机存在一定风险,包括刷机失败导致设备变砖、丢失数据等,因此用户在使用之前应该仔细阅读相关教程,并确保充分理解操作步骤。此外,刷机前建议备份手机中的重要数据,以防不测。 线刷转卡刷打包工具是一个非常实用的软件,它简化了Android设备的固件更新过程,使得非专业人士也能较为容易地刷写固件。然而,对于追求稳定性和安全性的用户来说,除非确实需要,否则一般不建议频繁进行刷机操作。
2025-07-28 19:56:08 50.66MB
1
1、方法1:直接双击“AUTORUN”文件,根据产品芯片选择“TXIC382X-PCI&PCIe;"或"WCH38X-PCIe"及”WCH35X-PCIe"三个选项(如不成功则用方法2) 2、方法2:右键单击“计算机/我的电脑”>属性-设备管理器-找到转接卡设备> 右键单击>更新驱动程序软件-浏览计算机以查找驱动程序软件-复制粘贴驱动文件地址>下一步 3、若以上方法均不成功,可自行百度到网上下载“驱动精灵”或“驱动人生”等第三方软件在线驱动。 注意:用方法2时,驱动文件一定要对应到正确的操作系统,不清想电脑系统的可右键单击“计算机/我的电脑”>属性 中查看
2025-07-28 16:58:46 19.76MB 串口卡驱动
1
KUKA机器人系统急救:无需专用U盘,普通U盘恢复机器人系统操作详解,KUKA机器人系统急救:无专用U盘情况下的普通U盘恢复操作方法详解,库卡机器人KUKA无专用U盘的系统急救方法库卡机器人KUKA无专用U盘的系统急救方法 可用普通U盘恢复机器人的系统 内有详细使用操作方法 ,库卡机器人;KUKA系统急救;无专用U盘;使用普通U盘恢复;操作方法。,《KUKA机器人系统急救:普通U盘操作指南》 KUKA机器人是全球领先的工业机器人制造商之一,其产品广泛应用于汽车制造、航空航天、金属加工等领域。随着工业自动化水平的不断提高,KUKA机器人在生产过程中扮演着越来越重要的角色。然而,在日常使用过程中,机器人系统可能会遇到各种突发情况,其中系统崩溃是最为棘手的问题之一。为了解决这一问题,通常需要使用专门的U盘来恢复系统,但在某些情况下,操作人员可能没有携带专用U盘。因此,掌握如何使用普通U盘进行系统急救显得尤为重要。 在上述提到的文档中,详细介绍了在没有专用U盘的情况下,如何利用普通U盘来恢复KUKA机器人系统的方法。文档提供了操作步骤的详解,从理论到实践,一步步指导用户如何执行恢复操作。这种方法的好处在于它简化了恢复过程,降低了对专业工具的依赖,使得即使在紧急情况下,也能迅速恢复机器人的正常运行。 文档中不仅包含了具体的操作步骤,还可能涉及了对KUKA机器人系统的基本了解,包括系统架构、文件系统组织以及急救所需的关键文件和软件工具。这样,即便是对机器人系统不够熟悉的技术人员,在遵循文档指导后也能成功完成系统急救。 除此之外,文档中可能还涵盖了如何准备普通U盘、如何正确备份和恢复系统文件、以及在恢复过程中需要注意的常见问题和解决方案。这些内容对于确保机器人系统在遇到故障时能够安全、有效地恢复至关重要。 值得一提的是,KUKA机器人系统急救不仅仅是一套操作流程,它还涉及到一系列的诊断和问题解决技巧。文档中可能还包括了如何进行系统诊断,以确定是否有必要进行急救操作,以及在急救过程中如何避免数据损坏、系统进一步故障等问题。 总结以上内容,这份文档是一份针对KUKA机器人操作人员的实用指南,旨在提供一种快速、有效的解决方案,以应对机器人系统崩溃时的紧急状况。它不仅关注于操作流程,还强调了预防措施和故障诊断,以确保机器人系统能够保持稳定和高效的运行。
2025-07-28 16:18:12 2.97MB css3
1
双扩展卡尔曼滤波(Dual Extended Kalman Filter,DEKF)算法是一种高效的数据处理方法,尤其适用于解决非线性系统状态估计问题。在电池管理系统中,DEKF算法的应用主要集中在对电池的荷电状态(State of Charge, SOC)和电池健康状况(State of Health, SOH)的联合估计上。SOC指的是电池当前的剩余电量,而SOH则是指电池的退化程度和性能状态。准确估计这两项指标对于确保电池的高效运行以及延长其使用寿命具有至关重要的作用。 电池的状态估计是一个典型的非线性问题,因为电池的电化学模型复杂,涉及的变量多且关系非线性。DEKF通过在传统卡尔曼滤波的基础上引入泰勒级数展开,对非线性函数进行线性化处理,从而能够较好地适应电池模型的非线性特性。此外,DEKF算法通过状态空间模型来描述电池的动态行为,能够基于历史数据和当前测量值,递归地估计系统状态并修正其预测值。 除了DEKF算法,还可采用其他先进的滤波算法来实现SOC和SOH的联合估计。例如,无迹卡尔曼滤波(Unscented Kalman Filter,UKF)通过选择一组精心挑选的采样点来近似非线性变换的统计特性,能够更精确地处理非线性问题。而粒子滤波(Particle Filter,PF)则通过一组随机样本(粒子)来表示概率分布,并利用重采样技术来改善对非线性和非高斯噪声的处理能力。这些算法都可以根据具体的电池系统模型和应用场景需求来选择和应用。 在电池系统与联合估计的研究中,深度技术解析至关重要。电池的动态行为不仅受到内部化学反应的影响,还与外界环境条件和操作条件有关,因此在研究中需要深入分析电池的内部结构和反应机理。通过精确的数学模型来描述电池的物理化学过程,并结合先进的滤波算法,可以实现对电池状态的精确估计和预测。 在车辆工程领域,电池作为电动车辆的核心部件,其性能直接影响车辆的运行效率和安全。利用双扩展卡尔曼滤波算法对电池进行状态估计,可以实时监控电池的健康状况和剩余电量,为电池管理系统提供关键数据支持,从而优化电池的充放电策略,避免过充或过放,延长电池的使用寿命,同时保障电动汽车的安全性与可靠性。 DEKF算法在电池状态估计中的应用,为电动汽车和可再生能源存储系统的发展提供了强有力的技术支持。通过对电池状态的准确预测和健康状况的评估,不仅可以提升电池的性能和使用寿命,还可以有效降低成本,推动电动汽车和相关产业的技术进步和可持续发展。
2025-07-27 20:41:24 119KB gulp
1
基于双卡尔曼滤波DEKF的SOC动态估计:联合EKF与扩展卡尔曼滤波实现精准估计,基于双卡尔曼滤波DEKF的SOC估计与EKF+EKF联合估计方法研究:动态工况下的准确性与仿真验证,基于双卡尔曼滤波DEKF的SOC估计 具体思路:采用第一个卡尔曼ekf来估计电池参数,并将辨识结果导入到扩展卡尔曼滤波EKF算法中,实现EKF+EKF的联合估计,基于动态工况 能保证运行,simulink模型和仿真结果可见展示图片,估计效果能完全跟随soc的变化 内容:纯simulink模型,非代码搭建的 ,基于双卡尔曼滤波DEKF的SOC估计; EKF+EKF联合估计; 动态工况; Simulink模型; 估计效果跟随SOC变化。,基于双卡尔曼滤波DEKF的SOC动态估计模型
2025-07-27 20:38:04 1.31MB safari
1