该资源包含基于U-Net模型的医学图像分割任务完整代码及不同注意力机制(如SENet、Spatial Attention、CBAM)下的训练结果。资源实现了数据预处理、模型定义、训练与验证循环,以及结果评估与可视化,提供了详细的实验记录与性能对比(如Accuracy、Dice系数、IoU等关键指标)。代码结构清晰,易于复现和扩展,适用于医学图像分割研究和U-Net模型改进的开发者与研究者参考。 在人工智能领域,图像分割技术一直是一个备受关注的研究方向,特别是在医学图像分析中,精确的图像分割对于疾病的诊断和治疗具有重要的意义。ISIC(International Skin Imaging Collaboration)项目提供了大量的皮肤病医学图像,这对于研究和开发图像分割模型提供了宝贵的资源。UNet作为卷积神经网络(CNN)的一种变体,在医学图像分割领域表现出了优异的性能,尤其是它的结构特别适合小样本学习,并且能够捕捉图像的上下文信息。 本研究利用UNet模型对ISIC提供的皮肤病医学图像进行了分割,并在此基础上加入了注意力机制,包括SENet(Squeeze-and-Excitation Networks)、CBAM(Convolutional Block Attention Module)等,以进一步提升模型性能。注意力机制在深度学习中的作用是模拟人类视觉注意力,通过赋予网络模型关注图像中重要特征的能力,从而提高任务的准确性。SENet通过调整各个特征通道的重要性来增强网络的表现力,而CBAM则更加细致地关注到特征的二维空间分布,为网络提供了更加丰富和准确的注意力。 研究结果表明,在引入了这些注意力机制后,模型的分割准确率达到了96%,这显著高于没有使用注意力机制的原始UNet模型。这样的成果对于医学图像的精确分割具有重要的意义,能够帮助医生更准确地识别和分析病灶区域,从而为疾病的诊断和治疗提供科学依据。 本资源提供了一套完整的医学图像分割任务代码,涵盖了数据预处理、模型定义、训练与验证循环、结果评估和可视化等关键步骤。代码结构设计清晰,方便开发者复现和对模型进行扩展,不仅对医学图像分割的研究人员有帮助,同时也对那些想要深入学习图像分割的AI爱好者和学生有着极大的教育价值。 通过对比不同注意力机制下的训练结果,研究者可以更深入地理解各种注意力机制对模型性能的具体影响。实验记录详细记录了各个模型的关键性能指标,如准确率(Accuracy)、Dice系数、交并比(IoU)等,这些都是评估分割模型性能的常用指标。通过这些指标,研究者不仅能够评估模型对图像分割任务的整体性能,还能够从不同维度了解模型在各个方面的表现,从而为进一步的模型优化提供指导。 这份资源对于那些希望通过实践来学习和深入理解医学图像分割以及U-Net模型改进的研究人员和开发人员来说,是一份宝贵的资料。它不仅包含了实现高精度医学图像分割模型的代码,还提供了如何通过引入先进的注意力机制来提升模型性能的实践经验。
2025-04-06 19:24:08 440.34MB UNet 注意力机制
1
megengine框架的图像分类SNetV2_0.5模型(ImageNet)
2022-10-17 12:07:33 4.88MB megengine 分类模型 senet
1
随着无人驾驶和智能驾驶技术的发展,计算机视觉对视频图像检测的实时性和准确性要求也越来越高.现有的行人检测方法在检测速度和检测精度两个方面难以权衡.针对此问题,提出一种改进的Faster R-CNN模型,在Faster R-CNN的主体特征提取网络模块中加入SE网络单元,进行道路行人检测.这种方法不仅能达到相对较高的准确率,用于视频检测时还能达到一个较好的检测速率,其综合表现比Faster R-CNN模型更好.在INRIA数据集和私有数据集上的实验表明,模型的mAP最好成绩能达到93.76%,最高检测速度达到了13.79 f/s.
2022-05-05 20:12:48 1.06MB 行人检测 卷积神经网路 Faster R-CNN
1
Pytorch实现SENet模型在CIFAR10数据集上的测试。ipynb文件,包含了完整的训练、测试输出数据。
2021-12-26 17:10:30 37KB pytorch cifar10 python
1
Basic_CNNs_TensorFlow2 一些基本CNN的tensorflow2实现。 包括的网络: MobileNet_V1 MobileNet_V2 SE_ResNet_50,SE_ResNet_101,SE_ResNet_152,SE_ResNeXt_50,SE_ResNeXt_101 挤压网 ShuffleNetV2 RegNet 其他网络 对于AlexNet和VGG,请参见: : 对于InceptionV3,请参见: : 对于ResNet,请参阅: : 培养 要求: Python> = 3.6 Tensorflow> = 2.4.0 tensorfl
1
SENet-Tensorflow 使用Cifar10的简单Tensorflow实现 我实现了以下SENet 如果您想查看原始作者的代码,请参考此 要求 Tensorflow 1.x Python 3.x tflearn(如果您易于使用全局平均池,则应安装tflearn ) 问题 图片尺寸 在纸上,尝试了ImageNet 但是,由于Inception网络中的图像大小问题,因此我对Cifar10使用零填充 input_x = tf . pad ( input_x , [[ 0 , 0 ], [ 32 , 32 ], [ 32 , 32 ], [ 0 , 0 ]]) # size 32x32
2021-11-19 11:34:38 304KB tensorflow densenet inception inception-resnet
1
SENet.mxnet 挤压和激励网络的MXNet实现( SE-ResNext 18,50,101,152,SE-Resnet,SE-Inception-v4和SE-Inception-Resnet-v2 ) 这是的挤压和激发网络( SE-ResNext,SE-Resnet,SE-Inception-v4和SE-Inception-Resnet-v2 )体系结构,如提出的。等al。 他们在SENet中部署了此SE块,并赢得了Imagenet 2017分类任务。 作者的caffe实现可在GitHub的中找到。 这是“挤压和激励”块的图示。 SE-ResNet模块的实现如下: SE-ResNext 50的实现如下表所示: 此MXNet实现。 我还从了。 顺便说一句,我在最后一个FullyConnected层之前添加了一个辍学层。 对于Inception v4,我从引用了MXnet
2021-09-02 21:23:10 345KB Python
1
Keras实现SEnet注意力机制模块
2021-08-05 22:06:40 363B 神经网络 cv 注意力机制
1
这是SENet的PyTorch实施(在ImageNet数据集上进行训练) 论文: 用法 准备数据 该代码以ImageNet数据集为例。 您可以下载ImageNet数据集,并将其放入如下位置。 由于内存限制,我仅提供ILSVRC2012_dev_kit_t12 ,换句话说,您需要下载ILSVRC2012_img_train和ILSVRC2012_img_val 。 ├── train.py # train script ├── se_resnet.py # network of se_resnet ├── se_resnext.py # network of se_resnext ├── read_ImageNetData.py # ImageNet dataset read script ├── ImageData # train and validation data ├── IL
2021-06-18 10:09:45 261KB 附件源码 文章源码
1
环境: tensorflow 2.1 最好用GPU 模型: Resnet:把前一层的数据直接加到下一层里。减少数据在传播过程中过多的丢失。 SENet: 学习每一层的通道之间的关系 Inception: 每一层都用不同的核(1×1,3×3,5×5)来学习.防止因为过小的核或者过大的核而学不到图片的特征。 用Resnet ,SENet, Inceptiont网络训练Cifar10 或者Cifar 100. 训练数据:Cifar10 或者 Cifar 100 训练集上准确率:97.11%左右 验证集上准确率:90.22%左右 测试集上准确率:88.6% 训练时间在GPU上:一小时多 权重大小:21
2021-05-13 13:53:51 55KB ar c ce
1