在电子工程领域,尤其是单片机和嵌入式系统的设计中,STM32系列微控制器是一种广泛应用的高性能、低功耗的32位微处理器。本实验“ALIENTEK MINISTM32实验24汉字显示实验_横屏”着重探讨了如何在STM32平台上实现24汉字的横屏显示功能,这对于开发需要中文用户界面的应用非常关键。 STM32系列是基于ARM Cortex-M内核的微控制器,涵盖了F0、F1、F2等多个产品线。这些型号的STM32芯片具有不同的性能和资源,适用于各种不同的应用场合。F0系列作为基础型,适合成本敏感的应用;F1系列则提供更多的GPIO引脚和存储器选择;而F2系列则拥有更强大的计算能力和更多的外设接口,适合复杂系统设计。 在这个实验中,我们将关注的是如何利用STM32的GPIO、定时器和串行通信接口等资源来驱动LCD显示屏,实现汉字的横屏显示。横屏显示意味着屏幕的宽度被用作主要的显示方向,这对于那些横向空间有限或者需要宽视角的应用十分适用。 实验可能涉及配置STM32的GPIO口作为LCD的控制信号,如数据线、时钟线、使能信号等。GPIO配置通常通过HAL库或LL库完成,这两个库是STM32CubeMX的一部分,提供了易于使用的API接口。 要进行汉字显示,需要一个包含汉字编码的字库。常见的有GB2312或GBK字库,它们包含了大量常用汉字。实验可能包括将字库加载到STM32的内部或外部Flash中,并设计相应的查找算法,以便根据需要显示的汉字在字库中找到对应的点阵字模。 接下来,使用定时器来产生LCD的刷新时序,控制LCD的显示更新。定时器的配置需要精确计时,以确保数据正确写入LCD的数据线。 然后,串行通信接口(如SPI或I2C)可能用于与LCD控制器进行通信。这涉及到设置通信协议、初始化总线和发送指令及数据。 实现汉字的横屏显示,需要对字模进行旋转或镜像处理,因为大部分汉字库是为竖直显示设计的。这通常在软件层面完成,通过对字模数据进行适当的位操作实现。 通过这个实验,开发者不仅可以掌握STM32的硬件接口编程,还能理解汉字显示的基本原理和技巧,对于提升嵌入式系统的用户界面设计能力有着极大的帮助。同时,这也为其他高级应用,如图形化用户界面、实时数据显示等奠定了基础。因此,深入理解和实践这样的实验对学习和掌握STM32单片机及其在嵌入式系统中的应用至关重要。
2025-07-30 13:08:13 168KB 单片机/嵌入式STM32-F0/F1/F2专区
1
《电子-ALIENTEK MINISTM32扩展实验4 TFTLCD横屏显示》 这篇教程主要探讨了如何在ALIENTEK MINISTM32开发板上进行TFT LCD(薄膜晶体管液晶显示器)的横屏显示实验。STM32系列微控制器是基于ARM Cortex-M内核的高性能芯片,广泛应用于单片机和嵌入式系统设计中。在这个实验中,我们将重点关注STM32-F0、F1和F2系列,它们是STM32家族中面向入门级到中高端应用的不同型号。 1. STM32系列介绍: STM32由意法半导体(STMicroelectronics)生产,其F0系列作为基础型,适合简单应用,F1系列提供了更多的外设选择,而F2系列则在性能上有所提升,适用于更复杂的嵌入式项目。这些芯片集成了丰富的外设接口,如GPIO、SPI、I2C、UART等,为实现TFT LCD控制提供了硬件基础。 2. TFT LCD原理: TFT LCD是一种有源矩阵液晶显示器,每个像素都配有一个晶体管,能独立控制电流,从而提高显示效果和响应速度。横屏显示是指将LCD的显示方向从常规的竖直方向调整为水平方向,这对于特定应用场景,如车载娱乐系统或某些特殊界面设计很有用。 3. 实验准备: 你需要一个ALIENTEK MINISTM32开发板,以及一块支持横屏显示的TFT LCD模块。确保开发板上已经正确连接了LCD的SPI或并行接口。同时,还需要合适的驱动库和编程环境,例如Keil uVision或STM32CubeIDE。 4. 控制TFT LCD: STM32通过SPI或并行接口与TFT LCD通信,发送指令和数据。驱动程序需要处理初始化、设置分辨率、颜色模式、显示方向等任务。对于横屏显示,需要修改初始化配置中的屏幕旋转参数,通常为命令0x36或0x3A,设置正确的像素格式和顺序。 5. 编程实现: 在实验代码中,首先进行LCD初始化,然后设置横屏模式。这可能涉及到设置寄存器值、发送控制指令、加载显示数据等一系列操作。例如,使用HAL库时,可以调用HAL_GPIO_Init()配置GPIO引脚,HAL_SPI_Transmit()发送数据,HAL_Delay()控制时序。 6. 调试与测试: 完成代码编写后,通过JTAG或SWD接口下载到STM32中,运行并观察LCD显示效果。可能需要反复调试,优化显示参数,直到达到预期的横屏显示效果。 7. 扩展应用: 掌握横屏显示技术后,可以进一步探索触摸屏集成、图形用户界面设计、动画播放等功能,为STM32开发带来更多可能性。 ALIENTEK MINISTM32扩展实验4的TFT LCD横屏显示教程是一个实践性强、富有挑战性的学习项目,它不仅能帮助你理解STM32微控制器的外设控制,还能让你深入掌握LCD显示技术,为后续的嵌入式开发打下坚实基础。
2025-07-30 12:41:58 38KB 单片机/嵌入式STM32-F0/F1/F2专区
1
STM32(意法半导体的微控制器系列)的OTA(Over-the-Air,空中升级)是一种通过网络更新设备固件的技术。在这个过程中,设备可以通过Wi-Fi、蓝牙或蜂窝网络接收新的固件版本,然后安全地替换当前的固件,以增加新功能、修复错误或提高性能。STM32 OTA升级流程涉及到多个步骤,包括固件打包、服务器部署、设备端接收和验证以及固件更新。 固件打包:在进行OTA升级之前,开发人员需要将新的固件代码编译成二进制文件,并且通常会添加校验码(如MD5或SHA-1)以确保文件的完整性和安全性。这个过程可能会使用像`TCP_IAP_http_v7.46_NB_Zigbee`这样的工具,它可能是一个集成TCP/IP协议栈、IAP(In-Application Programming,在应用编程)和HTTP服务的固件库,支持Zigbee无线通信。 服务器部署:将打包好的固件上传到服务器,配置相关的HTTP服务,使STM32设备能够通过HTTP请求获取固件更新包。服务器需要处理设备的请求,提供固件文件,并可能验证设备的身份,防止未授权的访问。 再者,设备端接收和验证:STM32设备通过网络接口(如TCP/IP)连接到服务器,发送HTTP GET请求下载固件更新包。`TCP_IAP_http_v7.46_NB_Zigbee`可能用于实现这一过程,其中TCP/IP部分负责网络通信,而HTTP服务则用来下载文件。下载完成后,设备会使用预存储的校验码对比新固件的校验值,确认其完整性。 接着,固件更新:如果验证成功,设备将使用Bootloader(引导加载程序)来执行固件的更新。`3.Bootloader_V2.7`可能是这个过程的关键组件,Bootloader是设备启动时运行的第一段代码,负责加载和验证新固件,然后跳转到新固件的入口点。Bootloader的安全性至关重要,防止了非法代码的注入。 在STM32中,Bootloader通常分为两种类型:应用Bootloader和系统Bootloader。应用Bootloader位于用户应用程序空间,主要用于软件升级;而系统Bootloader如ST-Link,是嵌入在芯片内部的,用于初始的固件加载。 整个OTA升级过程中,安全措施至关重要,包括加密传输、数字签名和安全启动等,以防止中间人攻击或恶意篡改。此外,考虑到网络的不稳定性,断点续传机制也常被用于确保大文件的可靠下载。 总结来说,STM32的OTA升级是一个涉及网络通信、固件打包、服务器交互、设备验证和Bootloader更新等多个环节的过程。通过`TCP_IAP_http_v7.46_NB_Zigbee`和`3.Bootloader_V2.7`这样的工具,可以实现高效、安全的固件升级。对于物联网设备而言,OTA功能不仅可以远程维护设备,还能降低现场服务成本,提高产品竞争力。
2025-07-30 01:39:33 13.31MB stm32 网络 网络
1
GD32是国内开发的一款单片机,据说开发的人员是来自ST公司的,GD32也是以STM32作为模板做出来的。所以GD32和STM32有很多地方都是一样的。 不过GD32毕竟是不同的产品,不可能所有东西都沿用STM32,有些自主开发的东西还是有区别的。 《GD32F103RCT6最小系统原理图详解》 GD32F103RCT6是一款由国内厂商开发的单片机,其设计团队有着ST公司的背景,因此在设计上借鉴了STM32的部分特性。GD32虽然与STM32存在相似性,但并非完全复制,它具有自身的创新和差异化设计。本文将详细解析GD32F103RCT6的最小系统原理图,帮助读者理解这款单片机的基本结构和工作原理。 1. **GD32F103RCT6核心特性** - GD32F103RCT6采用32位ARM Cortex-M3内核,程序存储器容量为256KB,RAM容量为48KB,封装形式为64-LQFP。 - 工作频率最高可达108MHz,提供了高速的数据处理能力。 - 内置丰富的外设接口,包括USB、UART、SPI、I2C等,满足多种应用场景的需求。 2. **电源与接地** - VCC3.3和GND是电路中最重要的电源和接地节点,为整个系统提供稳定的工作环境。 - VBAT/VLCD、VBAT/VUSB/VSA等电源引脚,用于支持特定功能,如电池备份或USB供电。 3. **时钟系统** - 晶振组件(OSC_IN和OSC_OUT)是时钟信号的来源,通常需要与外部晶振配合,为CPU和其他外设提供精确的时钟源。 - 通过C20、C21等电容进行滤波,确保时钟信号的稳定性。 4. **复位系统** - RESET引脚用于系统复位,C31和R30等元件组合实现复位电路,确保系统在异常情况下能可靠地初始化。 5. **JTAG调试接口** - JTAG接口(如J6、J7)用于芯片的编程和调试,包括SWDIO和JTCK等引脚,便于开发者进行软件调试和固件更新。 6. **通用IO接口** - GD32F103RCT6拥有众多GPIO引脚,如PB4、PC12、PD2等,可灵活配置为输入/输出,以驱动外围设备。 7. **USB 5V供电** - J4和J5接口提供USB 5V供电,通过R25、R29等电阻分压,确保电压稳定。 8. **无线通信接口** - NRF2401模块用于无线通信,包括NRF_CEN、NRF_CS、NRF_IRQ和SPI接口,实现无线数据传输。 9. **TTL转485串口** - 通过U4转换器实现TTL电平到485协议的转换,方便与其他设备的通信。 10. **EEPROM存储** - U5M24C08是EEPROM存储器,用于存储非易失性数据,即使断电也能保持信息。 11. **I2C接口** - I2C接口(如I2C2_SDA、I2C2_SCL)用于与I2C兼容的设备通信,如传感器或显示屏。 12. **OLED液晶接口** - LCD接口用于连接OLED屏幕,如A0、A1、A2等引脚,实现数据显示。 13. **LED状态指示** - LED1通过R33、R34控制,显示系统运行状态。 14. **用户操作按键** - KEY1用于用户交互,如唤醒、复位等操作。 15. **电源管理** - WK_UP引脚用于实现低功耗模式下的唤醒功能,配合C26、C27等电容和R24、R25等电阻进行电源管理。 总结来说,GD32F103RCT6最小系统原理图展示了该单片机如何与外围设备协同工作,包括电源管理、时钟系统、通信接口、存储器以及用户交互等关键部分。理解这些原理有助于开发者更高效地利用GD32F103RCT6进行嵌入式系统的设计和开发。
2025-07-29 17:39:50 111KB stm32 GD32
1
一些应用需要定制开发无线串口、指定发送频点、调制方式、加密传输等等,需要使用无线数据的传输场景,需要使用公用频段进行数据传输。 采用STM32+CC1200架构设计,进行无线数传,无线通信,无线串口开发,参见博客 https://blog.csdn.net/li171049/article/details/128639915
2025-07-29 15:16:38 28.85MB STM32 无线数传 无线串口
1
STM32是一款基于ARM Cortex-M内核的微控制器,广泛应用于工业控制、物联网等领域。FreeModbus是一个开源的Modbus协议栈,适用于多种嵌入式系统,包括STM32。在STM32上移植FreeModbus,可以实现与各种支持Modbus协议的设备,如PLC(可编程逻辑控制器)进行通信,极大地扩展了STM32的功能。 **1. Modbus协议** Modbus是工业自动化领域常用的通信协议,基于串行通信方式,支持ASCII、RTU(寄存器传输协议)和TCP/IP三种模式。RTU模式因其高效性和抗干扰能力在嵌入式系统中广泛应用。它通过串行接口发送和接收数据,每个消息包含地址、功能码、数据和校验码。 **2. STM32移植FreeModbus** 移植过程主要涉及以下步骤: - **配置硬件接口**:STM32的串口(USART或UART)需配置为RS485或RS232通信模式,根据实际硬件连接选择合适的波特率、奇偶校验等参数。 - **设置RTOS(实时操作系统)**:如果使用了RTOS,如FreeRTOS,需要为FreeModbus分配任务和队列资源。 - **编译链接**:将FreeModbus库文件加入工程,配置编译选项,确保所有依赖库和头文件正确引用。 - **应用接口**:调用FreeModbus提供的API,实现读线圈、写线圈、读离散输入、读输入寄存器、读保持寄存器和写保持寄存器等功能。 - **错误处理**:添加适当的错误处理机制,例如超时重试、错误码解析等。 **3. 功能实现** - **读线圈**:用于查询PLC的数字输出状态,返回二进制值。 - **写线圈**:向PLC写入数字输出,控制执行机构。 - **读离散输入**:获取PLC的数字输入状态,同样返回二进制值。 - **读输入寄存器**:读取PLC的模拟输入,通常为16位整数值。 - **读保持寄存器**:读取PLC的保持寄存器,存储过程变量或计算结果。 - **写保持寄存器**:向PLC写入保持寄存器,可以用来设定过程变量或执行算术操作。 **4. 开发环境与工具** 开发过程中可能需要的工具有: - STM32CubeMX:用于配置STM32的外设和生成初始化代码。 - Keil uVision或IAR:IDE进行C/C++代码编写和编译。 - ST-Link或J-Link:调试器进行程序烧录和调试。 - Modbus Poll/Slave软件:作为上位机测试工具,模拟Modbus主站或从站进行通信验证。 **5. 注意事项** - 数据格式转换:确保主机和从机的数据表示一致,如字节序、浮点数格式等。 - 校验码计算:正确计算和检查CRC或LRC校验,保证数据的完整性和准确性。 - 超时处理:设置合理的通信超时,避免因网络延迟或故障导致的死锁。 - 串口冲突:在多设备共用一条串行总线时,注意避免信号冲突。 通过以上步骤和知识点,开发者可以将FreeModbus成功移植到STM32上,实现与PLC的有效通信,从而构建更复杂的工业控制系统。
2025-07-29 10:24:04 3.63MB STM32移植 FreeModbus ModbusRTU
1
基于STM32主控的单相三相逆变器SPWM程序的设计与实现。首先阐述了三相逆变器的基本概念和技术背景,重点讨论了SPWM(正弦波脉宽调制)技术的应用。接着,文章深入探讨了STM32主控电路设计的特点,包括高精度控制、抗干扰能力和稳定性。随后,文中讲解了如何通过SPWM技术实现变频(0~100Hz)、变压调节,并介绍了外接按键控制功能。最后,强调了该逆变器支持二次开发,允许用户使用C语言进行自定义功能扩展和性能优化。 适合人群:从事电力电子技术研究或开发的技术人员,尤其是对逆变器设计和嵌入式系统有一定了解的研发人员。 使用场景及目标:①理解和掌握三相逆变器的工作原理及其在工业领域的应用;②学习STM32主控技术在逆变器中的具体实现;③利用提供的逆变程序进行二次开发,满足特定项目的需求。 其他说明:本文不仅提供了理论知识,还包含了实际操作指导,帮助读者更好地应用于实际工程项目中。
2025-07-28 21:47:42 18.88MB
1
在现代电子工程和自动化领域中,步进电机的应用极为广泛,它以其精确的位置控制、简单的控制方式和较高的可靠性等优点,成为实现各种精密运动控制的理想选择。随着微控制器技术的快速发展,将步进电机与微控制器结合,不仅可以实现电机的基本运动控制,还能执行更为复杂的任务,如本文所涉及的,在STM32微控制器的驱动下,使步进电机云台实现画线和画圆的功能。 我们需要了解STM32微控制器的基本情况。STM32系列是由STMicroelectronics(意法半导体)生产的一系列32位ARM Cortex-M微控制器,以其高性能、低功耗及丰富的外设而广受欢迎。它具备高度的灵活性,能够通过各种编程接口与外部设备进行通信和控制。在步进电机的控制方面,STM32提供了丰富的定时器和脉冲宽度调制(PWM)功能,可以用来生成精确的时序和控制脉冲,这对于控制步进电机的步进序列至关重要。 步进电机云台则是指安装了步进电机的平台,能够控制载荷的方位和角度,常见于摄影、监控、精密定位等领域。云台的运动通常包括水平旋转和垂直旋转,通过精确控制这两个方向上的步进电机,云台可以实现精确的位置调整。 实现画线和画圆功能,实际上就是要求步进电机云台能够按照特定的轨迹进行移动。画线功能要求云台在两个端点之间进行直线移动,而画圆功能则要求云台进行圆形路径的运动。这些动作的实现依赖于对步进电机的精确控制,包括速度的控制、加速度的控制以及步进角度的准确计算。 在编写代码时,首先需要对步进电机的驱动电路进行初始化,包括设置步进电机的相序和步进模式,然后通过编写控制算法,使电机按照预定的轨迹进行运动。为了画线,需要计算出直线方程,并将其转换为电机步进序列;而为了画圆,则需要根据圆的数学方程来确定步进电机的步进序列。 STM32微控制器提供了丰富的库函数和中间件,可以简化开发过程,加速应用程序的开发。例如,可以利用STM32CubeMX工具进行硬件配置和初始化代码的生成,以及HAL库函数来控制电机。开发人员需要关注定时器的配置,如何产生合适的中断来控制步进电机的启动、停止和方向改变,同时还要考虑电机加速和减速的算法,以确保云台运动的平滑和准确。 此外,为了使步进电机云台系统更加稳定和可靠,可能还需要实现反馈控制机制,比如使用位置传感器来获取实际位置信息,并与期望位置进行比较,通过闭环控制来调节电机的运行状态,以补偿由于负载变化或外部扰动等因素造成的误差。 在实际应用中,步进电机云台的画线画圆功能可以用于自动化绘图、精密定位、图案打印等场合。比如,在自动绘图仪中,步进电机控制笔进行精确移动,可以绘制各种图形和文字;在精密定位设备中,步进电机云台可以对摄像头或其他检测设备进行精确的定位,进行检测或测量工作;在自动化广告牌或电子白板中,步进电机云台也可以用来实现自动书写或播放动态画面。 通过以上内容,我们可以看出,STM32驱动步进电机云台实现画线画圆功能的代码不仅是对电机控制技术的实践,也是对微控制器编程能力的考验。熟练掌握STM32微控制器的编程方法和步进电机的控制原理,可以开发出更多高性能和高精度的自动化控制应用。
2025-07-28 21:03:24 3KB 步进电机 STM32 画线画圆
1
我在做24年电赛H题时发现需要一个可以提供稳定角度的传感器,第一时间想到了MPU6050,但是使用后发现MPU6050的零飘特别大,所以选择更换模块。最终选择了正点原子的角度传感器模块ATK-IMU901,但是正点原子只提供了HAL的文件,但是我使用的是标准库开发,于是在网上寻找资料,但是没有,就只能自己动手了。最终改完文件。 在进行24年电子设计大赛的H题项目开发时,遇到了需要精准角度测量的挑战。原本考虑使用MPU6050传感器模块,但是其零点漂移问题较为严重,导致无法获得稳定准确的测量数据。因此,作者决定更换为正点原子的角度传感器模块ATK-IMU901。然而,在使用该模块时,遇到了一个问题,即正点原子提供的库文件是基于HAL(硬件抽象层)的,而作者在开发过程中使用的是较为传统的标准库(Standard Peripheral Libraries),因此无法直接使用这些HAL库文件。 由于网上缺乏相关资料,作者只能选择自己动手解决。最终,作者成功地将正点原子的角度传感器模块ATK-IMU901与STM32F103C8T6微控制器通过标准库进行适配。这个过程说明,尽管市面上很多先进的模块逐渐转向HAL库开发,但是在实际应用中,标准库依然具有其不可替代的价值,特别是在一些传统项目或者开发者对HAL库不太熟悉的情况下。 在完成对标准库的适配后,作者将整个项目打包成一个压缩包,其中包含多个文件,这些文件名反映了项目工程的多个部分和结构。例如,"Project.uvguix.Admin" 可能是项目管理相关的文件,"keilkill.bat" 可能是一个批处理文件,用于清除或者关闭Keil MDK软件进程,"readme.txt" 则是项目说明文档,提供了项目的基本信息和使用指南。"Project.uvoptx"、"Project.uvprojx" 文件分别是Keil工程的优化和项目文件,而以"Project.uvguix." 开头的其他文件可能包含了项目中各个模块的用户界面或者配置界面。"System" 和 "User" 文件夹可能包含了系统级和用户级的代码和资源,"Objects" 文件夹通常用于存放编译过程中生成的对象文件。 整个项目通过作者的努力,实现了角度传感器模块与STM32F103C8T6微控制器的有效对接,不仅解决了零点漂移的问题,而且为使用标准库的开发者提供了一条可行的路径。这对于那些在资源有限的情况下,需要进行精确角度测量的嵌入式系统开发者来说,是一个宝贵的参考资料。 总结而言,本文详细介绍了作者在电子设计大赛中遇到的技术难题,以及他们是如何通过更换传感器模块和适配标准库,最终解决角度测量不稳定的问题。作者不仅提供了具体的技术路径,还通过分享自己的项目文件,为其他开发者提供了一个可供参考的实践案例,这在STM32嵌入式系统开发社区中是非常有价值的经验分享。无论是对于初学者,还是对于那些寻求特定解决方案的开发者,本项目的成功实施都能够提供帮助,激发更多人在嵌入式系统开发中的创新和探索。
2025-07-28 18:57:36 708KB stm32
1
**Jlink安装包详解** JLink是SEGGER公司推出的一款强大的嵌入式开发工具,主要用于调试基于ARM架构的微控制器,如STM32等。在标题中提到的"Jlink安装包,版本号为V7.50",指的是这个安装包是JLink的第7.50版,这是一个针对Windows操作系统、64位架构的版本。 **JLink功能** 1. **硬件调试**:JLink提供硬件调试功能,通过JTAG或SWD接口连接目标板,实现对MCU的程序下载、断点设置、单步执行、变量查看等功能。 2. **仿真器**:JLink作为仿真器,可以替代传统的编程器,实现在开发阶段快速烧录程序到目标芯片。 3. **实时性能监测**:支持实时性能监测,包括CPU使用率、内存占用、中断响应时间等。 4. **远程调试**:JLink可以通过网络进行远程调试,开发者无需物理接近目标设备,提高了开发效率。 5. **固件更新**:JLink自身也支持固件更新,用户可以通过官方提供的工具升级JLink的固件,获取新的功能或修复已知问题。 **STM32与JLink** STM32是由意法半导体(STMicroelectronics)推出的基于ARM Cortex-M系列处理器的微控制器。由于JLink对ARM架构的良好支持,它常被用于STM32的开发调试。JLink与STM32配合使用,可以帮助开发者轻松地进行程序调试、闪存编程以及运行时性能分析。 **JLink_Windows_x86_64_V750.exe** 这个文件名"JLink_Windows_x86_64_V750.exe"表明这是JLink V7.50版本的Windows 64位安装程序。执行这个程序将安装JLink的相关软件,包括驱动、调试器、固件升级工具等,使得用户能够在64位的Windows系统上使用JLink的功能。 **安装与使用** 1. 下载并运行"JLink_Windows_x86_64_V750.exe",按照安装向导的步骤进行安装。 2. 安装完成后,通常会生成桌面快捷方式,点击启动JLink Commander或者JLink GDB Server等工具。 3. 连接JLink硬件到开发板,确保USB线连接稳定,电源供应正常。 4. 在IDE(如Keil、IAR、Visual Studio等)中配置JLink作为调试器,并设置正确的串口和波特率。 5. 开始调试过程,如下载程序、设置断点、查看寄存器和内存状态等。 JLink V7.50是一个适用于STM32等ARM设备的强大调试工具,其丰富的功能和易用性极大地促进了嵌入式开发的效率。通过安装和使用JLink_Windows_x86_64_V750.exe,开发者能够更好地管理和优化他们的项目,从而提升产品开发的成功率和速度。
2025-07-28 16:06:23 51.26MB STM32 JLINK
1