道路交通拥堵检测是一个重要的智能交通系统组成部分,它能够帮助及时发现道路状况,预测交通流量,从而采取相应的交通管理措施,以减少交通拥堵情况的发生。本文档提供了用于目标检测的道路交通拥堵检测数据集,该数据集以YOLO和VOC格式组织,共有2923张标注图片,每一幅图像都对应有一个XML格式的标注文件以及一个TXT格式的标注文件。这种格式化设计使得数据集既适用于YOLO(You Only Look Once)这类流行的目标检测框架,又兼容VOC(Pascal VOC)数据集格式,便于研究者和开发者在目标检测和图像识别领域进行实验和训练。 数据集的结构设计合理,分为三个主要文件夹:“JPEGImages”,“Annotations”,和“labels”。其中,“JPEGImages”文件夹存储的是包含交通拥堵状况的原始图片;“Annotations”文件夹包含了与图片一一对应的XML格式的标注文件,文件中记录了每个目标物体的详细信息,例如物体的位置、大小等;“labels”文件夹则包含了TXT格式的文件,每个TXT文件对应一个图片文件,记录了图像中的目标及其类别,提供了YOLO格式的标注信息,便于直接用于YOLO网络模型的训练。 数据集中的标签种类单一,只有一个标签“traffic_jam”,用于识别交通拥堵场景。根据提供的信息,此标签下的框数为3489,总框数也是3489,表明每一幅图片中均标注了交通拥堵的情况,且同一幅图片中可能包含多个拥堵区域。标签的形状为矩形框,这与目标检测领域常用的目标框(bounding box)一致。 此外,文档还特别提到了数据集的分辨率和清晰度,2923张图片均为清晰图片,但没有进行图像增强处理。分辨率以像素表示,尽管未给出具体数值,但通常交通图像的分辨率足够高,以便识别和分析道路上的各种情况。数据集的类型标记为119m,这可能是指数据集的版本或者是某种特定的分类代码。 值得指出的是,文档中提到本数据集不保证训练得到的模型或权重文件的精度,这意味着数据集的使用者需要对所使用的数据和训练过程负责,并自行评估模型的实际表现。在实际应用中,为了确保模型的准确性,通常需要进行大量的数据预处理和模型调优工作。 文档还提到了标注示例或图片概览,这部分内容有助于用户直观了解数据集的标注质量,并可以作为模型训练前的数据质量检查参考。 这是一个专门为道路交通拥堵检测设计的YOLO+VOC格式数据集,它提供了丰富的标注图片资源和标注信息,有助于研究人员和开发者构建和训练有效的交通拥堵识别模型。同时,清晰的结构和单一的标签设计也便于模型训练和评估工作。但是,用户需要自行对训练结果负责,并在使用数据集前进行充分的测试和调优。
2025-09-09 16:48:10 5.13MB 数据集
1
城市交通拥堵具有严重的危害性, 直接导致时间延误、能源浪费和废弃物排放增加, 降低居民生活水平. 现阶段, 基于平面交叉路口交通灯切换时间相对固定, 恶劣天气或发生交通事故时路口经常发生交通堵塞的实际情况, 本文提出了一种平面交叉口交通拥堵多方向交通灯运行时间自适应算法, 采取视频图像处理算法判断道路交通拥堵情况, 根据路况设置交通灯的工作时间, 并设计了相应的控制系统. 仿真结果表明, 在高峰期时段, 此自适应算法的车辆通行效率高于传统的交通灯运行时间控制方法.
1
针对时变路网条件下的低碳车辆路径问题,首先,分析车辆离散行驶速度与连续行驶时间之间的关系,依据“先进先出”准则设计基于时间段划分的路段行驶时间计算方法,引入考虑车辆速度、实时载重、行驶距离与道路坡度因素的碳排放计算函数;然后,在此基础上以所有车辆的碳排放量最小为目标构建低碳时变车辆路径问题数学模型;最后,引入交通拥堵指数,设计交通拥堵规避方法,并根据模型特点设计一种改进蚁群算法求解.实验结果表明,所提出方法能有效规避交通拥堵、缩短车辆行驶时间、减少车辆碳排放,促进物流配送与生态环境和谐发展.
1
人工智人-家居设计-多智能体交通拥堵自组织控制策略研究.pdf
2022-07-07 20:03:12 7.15MB 人工智人-家居
关于城市交通拥堵治理研究的文献综述,雷洋,黄承锋,城市交通拥堵问题已经成为阻碍城市健康发展的一大顽疾,从目前的研究和实践来看,产城市交通拥堵的原因具有复杂性,其中涉及到交
2022-06-15 23:27:51 472KB 首发论文
1
基于隐马尔可夫链与gru循环神经网络模型的交通拥堵指数预测 关键词 时序预测 XGBoost ARiMA GRU Network 说明 本项目使用GRU神经网络来对深圳北站附近的12条道路的交通拥堵指数(TTI)进行时序预测。 描述详见赛题说明.pdf。 report.pdf为实验报告。 关键词 时序预测 XGBoost ARiMA GRU Network 说明 本项目使用GRU神经网络来对深圳北站附近的12条道路的交通拥堵指数(TTI)进行时序预测。 描述详见赛题说明.pdf。 report.pdf为实验报告。 关键词 时序预测 XGBoost ARiMA GRU Network 说明 本项目使用GRU神经网络来对深圳北站附近的12条道路的交通拥堵指数(TTI)进行时序预测。 描述详见赛题说明.pdf。 report.pdf为实验报告。
道路交通拥堵正在成为发展中国家的一个严重问题,并严重影响着各国的经济。 城市道路日益拥堵对城市地区的经济增长和宜居性构成了真正的威胁。 大多数交通拥堵是由于计划外的道路网络、大量车辆和严重拥堵区域的存在造成的。 交通拥堵不仅对经济构成威胁,也对环境构成威胁。 从拥挤的主要道路到次要道路和小街的溢出效应作为替代路线通常会导致更多的拥堵; 由于间距过小和不断的走走停停,增加了碰撞和事故的机会。 下面的论文通过估计城市道路网络上实时交通拥堵的范围并预测到目的地的替代最短路线,提出了一种智能拥堵避免技术。 所提出的系统使用 K-Means 聚类算法来估计不同道路上的拥堵程度,然后使用 Dijkstra 算法来预测最短路线。 一旦用户将目的地输入系统,系统就会预测出距离用户当前位置的最短路线。 在每个路口重复该过程,直到用户到达目的地。 论文链接: http : //ieeexplore.ieee.
2022-05-21 21:44:11 12.5MB matlab
1
本标准规定了道路平面交叉口及区间路段交通拥堵度的评价指标和方法。 本标准适用于城市道路、公路的平面交叉口及区间路段交通拥堵度的评价。
2022-01-27 15:34:12 371KB 拥堵 GAT115
1
基于GPS数据的交通拥堵检测
2022-01-25 18:41:00 1.18MB 研究论文
1
流量预测 拟议的概念证明,用于解决智​​能城市的交通拥堵和预测问题。 二手-LSTM(用于将来的预测)+ CNN(用于检测流量密度)+实时推文将所有这三种方法结合起来以产生流量拥塞因子(TCF),并在将来的任何时候使用Google API提出基于此的路由建议。 内容 - 公用文件夹- 截至9月18日的TCF数据 LSTM预计到9月18日的时间 src文件夹-React应用程序 实用程序文件- tweets_realtime.py-删除有关流量的地理位置标记的tweets tempserver-临时服务器,将所有从抓取中获得的推文排队,并充当React应用程序的API。 屏幕截图 注意:代码清理仍在进行中,该项目是为黑客马拉松而设计的
2021-12-06 09:32:53 1.79MB HTML
1