本文通过运用最优控制理论,结合遗传算法和约束规划技术,探索了无人机在对抗来袭武器时的烟幕干扰弹投放策略。在给定特定条件下,研究团队分析了单机固定参数、单机未知参数、单机多弹时序、多机单弹投放以及多机多弹的全局投放问题。通过建立相应的数学模型,运用运动学分析、模糊网格搜索、局部搜索优化方法、自由末端的极小值原理以及遗传算法,得到了一系列优化的解决方案。 在问题一中,研究人员首先计算了在已知条件下,单架无人机使用一枚烟幕干扰弹对目标的有效遮蔽时长。而在问题二中,则对单机的烟幕干扰弹投放策略进行了优化,实现了更长的有效遮蔽时间。问题三进一步分析了单机在投放多枚烟幕干扰弹时的时序优化问题,以达到对目标的最大遮蔽效果。 问题四将研究视角扩展到多架无人机,每架无人机投放一枚烟幕干扰弹来干扰同一个目标,需要找到最优的投放策略。而问题五则提出了一个更复杂的全局优化问题,即五架无人机最多投放三枚干扰弹以干扰三个不同的目标,这要求制定一个全局最优投放策略。 在解决问题的过程中,研究人员采用了运动学建模、遗传算法和约束规划相结合的方法,成功解决了多变量问题下的烟幕干扰弹协同投放问题。研究结果不仅为工程应用提供了理论参考,而且所采用的方法也具有通用性,能够适用于更多无人机的应用场景。此外,研究中还构建了基于物理直觉的参数范围约束,并参考了最优控制问题的解决方案,最终得到了总遮蔽时长达17.8秒的全局最优投放策略。 通过此研究,可以看出无人机烟幕干扰弹投放策略的优化对于提高干扰效果具有重要意义。研究团队的工作为实际操作中如何有效投放烟幕干扰弹提供了有价值的参考。最终的研究成果表明,通过合理的模型构建和计算方法,能够显著提升烟幕干扰弹的作用时间,从而在军事上达到更佳的干扰效果。 关键词包括最优控制问题、遗传算法、约束规划和无人机协同等。这些关键词体现了文章研究的核心问题和方法论。研究中提到的无人机、烟幕干扰弹以及相关飞行参数,如飞行速度和投放时间,都是实现最优投放策略的关键因素。而模型和算法的应用,则是将这些因素转化为有效的解决方案的工具。最终,这项研究证明了基于理论模型和计算机技术解决复杂实际问题的可行性和有效性。
2026-01-06 20:28:15 2.83MB 数学建模 全国大学生数学建模竞赛
1
第十六届蓝桥杯单片机国一经验总结(含第11-15届省赛/国赛代码)
2025-12-18 22:35:43 4.14MB 蓝桥杯 代码开源
1
蓝桥杯单片机组比赛最全资料,整理了全网10+资料包,省赛国赛题目都有!!!自认为是全网最全了!里面包含CT107D开发板资料!!!
2025-11-30 21:37:37 247.8MB 蓝桥杯 单片机开发 CT107D 蓝桥杯开发板
1
本教程主要介绍了如何在物联网国赛中使用LoRa模块进行基本的LED控制,通过通用库来实现LED的点亮、熄灭和状态翻转功能。LoRa是一种长距离无线通信技术,常用于物联网设备的低功耗远距离通信。 我们来看LED的控制函数。在示例代码中,`GpioWrite()`函数用于设置LED的状态,参数为LED的引脚结构体和状态值。`GpioWrite(&Led1,0)`表示将LED1点亮,因为0通常代表低电平,即LED导通;而`GpioWrite(&Led1,1)`则表示熄灭LED1,1代表高电平,LED截止。同样,`GpioWrite(&Led2,0)`和`GpioWrite(&Led2,1)`分别对应LED2的点亮和熄灭操作。 `GpioToggle()`函数用于快速切换LED的状态,它会改变LED引脚的电平,使得LED在亮和灭之间翻转。例如,`GpioToggle(&Led1)`将使LED1的状态翻转,如果之前是亮的,则变为熄灭,反之亦然。同样地,`GpioToggle(&Led2)`对LED2执行相同的操作。 在代码的主函数`main()`中,可以看到`Init()`函数的调用,这是系统初始化的入口,包括了MCU(微控制器)和外设的初始化,以及按键的初始化和定时器的配置。`keys_init()`用于初始化按键,`Tim2McuInit(1)`设置了一个1毫秒的定时中断,即每1毫秒执行一次`Time2Handler`回调函数。 `KeyDownHandler()`函数目前为空,通常这个函数会被用来处理按键按下事件,但在这个教程中没有具体实现。 `handlerPre10Ms()`函数设计为一个10毫秒的循环,用于执行特定的周期性任务。这里使用了一个for循环,延迟30次,每次延迟10毫秒,总时长为300毫秒。然而,在这个例子中,该函数并未实际调用,因此它对LED的操作没有影响。 在主循环中,我们可以看到`GpioWrite()`和`GpioToggle()`函数的示例应用,用于控制LED1和LED2的状态。`HAL_Delay(1000)`是一个延时函数,用于暂停程序执行1秒钟,这在实际项目中常用于控制LED的闪烁频率或者实现定时操作。 实验效果部分,展示了如何通过编程实现LED的点亮、熄灭以及状态翻转。通过运行这段代码,LED将会按照设定的指令进行相应的动作,这对于理解LoRa模块的控制逻辑和实践物联网设备的简单交互非常有帮助。 总结来说,这个教程主要教授了如何利用LoRa模块和通用库来控制LED的输出,包括点亮、熄灭和状态翻转的基本操作,同时展示了系统初始化和延时函数的使用。这些基础知识对于参加物联网竞赛或进行相关项目开发是非常重要的。
2025-10-24 11:13:35 19KB LoRa
1
华为ICT大赛是华为技术有限公司主办的一项旨在提升全球范围内通信与信息技术人才的专业技能,增强其实践和创新能力的竞赛活动。2019-2020年度的网络赛道作为其中的重要组成部分,吸引了众多在校大学生及社会人士参与,它为参赛者提供了一个展示和提升网络技能的舞台。网络赛道的国赛实验真题包括了对参赛者网络知识和实际操作能力的全面考核,题目设计覆盖了网络基础、网络构建、网络维护以及网络安全等多个方面,能够全面检验参赛者的网络技术能力。 在华为ICT大赛2019-2020网络赛道国赛实验真题中,题目内容不仅包括了理论知识的问答,更重要的是涉及到实际操作的模拟。实验题目的设计旨在让参赛者通过模拟实际工作环境,解决网络问题,以此检验其在真实环境中的应变能力和问题解决能力。这种实验题目形式的考核对于培养具有实战经验的技术人才尤为重要,因为它能够将理论知识与实际操作相结合,确保人才具备真实的项目处理能力。 同时,这些真题附带的答案部分对于参赛者来说是十分宝贵的资源。它不仅能够帮助参赛者检验自己的答案是否正确,更重要的是能够通过答案了解到更高效的解决方案和思路,从而在有限的时间内提升自己的网络技能。通过对答案的深入理解和分析,参赛者可以学习到更多的网络技术知识和操作技巧,这对于提升个人网络技术水平具有重要的意义。 华为ICT大赛网络赛道国赛实验环境的文件中,包含的“仅拓扑”文件展示了实验所用的网络结构。网络拓扑是网络技术中非常关键的概念,它描述了网络中各个网络节点(如计算机、交换机、路由器等)之间的连接方式,它对于理解整个网络的工作原理和故障诊断有着不可或缺的作用。通过阅读和分析网络拓扑,参赛者能够更加清晰地理解网络的结构布局,为后续的网络搭建和问题解决打下良好的基础。 另一个文件“华为ICT大赛2020国赛实验环境(解法)”则提供了实验题目的解题步骤和思路。这些解法对于参赛者来说是极具参考价值的,因为它们代表了在实际操作中解决问题的有效方法和最佳实践。通过学习这些解法,参赛者可以了解到更为专业的操作方法,提高解决复杂网络问题的效率和准确性。 在网络技术不断发展的今天,专业人才的培养显得尤为重要。华为ICT大赛不仅是一个竞技平台,更是一个培养通信与信息技术人才的摇篮。通过这样的竞赛,可以激发参赛者的创新思维和挑战精神,为未来的网络通信领域输送更多的优秀人才。 华为ICT大赛2019-2020网络赛道国赛实验真题(附答案)是对网络技术人才专业技能的一次全面测试,同时也为参赛者提供了一个学习和提升自我的宝贵机会。通过这样的竞赛活动,不仅能够检验和提升参赛者的网络技术能力,也能够为网络通信行业注入新鲜的血液,推动整个行业的发展。
2025-09-29 12:05:25 99KB 网络 网络
1
### 2023FPGA国赛能力测试题解析 #### 一、电梯控制电路设计 **背景介绍:** 在2023年的全国FPGA大赛中,参赛者需要完成的一项任务是设计一个电梯控制电路。该电路的目标是实现一个能够根据用户指令自动运行的电梯系统,同时具备一定的安全功能。 **设计要求概述:** - **楼层总数**:大楼共有40层。 - **初始楼层**:电梯初始停靠在第1层。 - **楼层移动规则**:当目标楼层与当前所在楼层不一致时,电梯会按照指定方向移动。 - **特殊楼层**:2-9层被标记为未开放区域,但在紧急情况下可以通过特定操作到达这些楼层。 - **载客限制**:电梯的最大载客量为13人,最大承重为1000kg,超出限制时会触发警报。 **输入信号说明:** - **目标楼层**(`H[7:0]`):表示用户希望前往的楼层编号。 - **紧急按键**(`key`):在紧急情况下使用,用于解锁未开放楼层。 - **当前人数**(`num[3:0]`):表示当前电梯内的人数。 - **乘客重量**(`weight[9:0]`):表示当前电梯内的总重量。 **输出信号说明:** - **当前楼层**(`N[7:0]`):表示电梯当前所在的楼层。 - **警报信号**(`alert`):在人数或重量超过规定值时触发。 **程序结构:** ```verilog module elevator#(parameter floor = 40)( input clk, rst_n, input key, [7:0]H, [3:0]num, [9:0]weight, output reg [7:0]N, output reg alert); ``` **测试代码示例:** 测试代码提供了对`elevator`模块的调用,并通过一系列预设的输入值来验证其正确性。 ```verilog initial begin clk = 0; rst_n = 0; #15 rst_n = 1; forever #5 clk = ~clk; end initial begin key = 0; H = 0; num = 0; weight = 0; #20 H = 30; num = 1; weight = 50; #400 H = 8; #10 key = 1; @(negedge clk); key = 0; #300 H = 12; num = 14; #20 num = 10; weight = 1001; #50 weight = 900; end ``` #### 二、非重叠序列检测设计 **背景介绍:** 本部分的任务是设计一个串行序列检测器,该检测器专门用于识别特定的六位比特序列“011010”。 **设计要求概述:** - **输入数据**:以每六个比特为一组,检测序列“011010”。 - **输出信号**:如果检测到序列,则在最后一个比特之后的时钟周期将`match`信号置为高电平;如果序列不匹配,则将`not_match`信号置为高电平。 - **特殊处理**:一旦第一个比特不符合预期,则后续五个比特不再进行检测,直到下一个六比特组。 **输入信号说明:** - **时钟**(`clk`):时钟信号,用于同步数据输入。 - **复位**(`rst_n`):复位信号,用于初始化状态机。 - **数据输入**(`data`):串行数据输入,每六个比特构成一组。 **输出信号说明:** - **匹配指示**(`match`):当检测到目标序列时输出高电平。 - **不匹配指示**(`not_match`):当未检测到目标序列时输出高电平。 **程序结构:** ```verilog module sequence_detect( input clk, input rst_n, input data, output reg match, output reg not_match ); ``` **测试代码示例:** 测试代码同样提供了对`sequence_detect`模块的调用,并通过一系列预设的数据流来验证其正确性。 ```verilog initial begin clk=0; rst_n=0; D_in=0; data=24’b011100_011010_011110_011101; #5; rst_n=1; end always #10 clk<=~clk; always@(posedge clk)begin D_in <= data[23]; data <= {data[22:0],data[23]}; end ``` 以上两个案例展示了如何利用Verilog HDL语言设计具体的数字逻辑电路,同时也体现了FPGA技术在实际应用中的灵活性和高效性。
2025-09-12 11:03:33 243KB #FPGA
1
2024国赛官网给出了四篇优秀论文,但很遗憾的是虽然论文有完整代码却并没有附上代码调用数据。主包花了一点点时间把其中一篇原论文(C234)用到的数据和原始代码整理出来了,大家看着用~ 若侵权请私信我删帖~ 数学建模是一种重要的科学研究方法,它通过建立数学模型来解决实际问题,广泛应用于工程技术、经济管理、生物医学等领域。在2024年的国赛中,四篇优秀论文均未附带完整的数据和代码,这对参赛者理解和复现研究成果造成了一定的困难。在这种情况下,一个名为主包的团队成员花费时间对其中一篇名为C234的论文所使用的数据和原始代码进行了整理和复原。 这项工作对于参赛者来说意义重大,因为数据和代码是复现论文成果的关键。没有这两样东西,其他参赛者只能通过阅读论文的文字描述来推测作者的研究过程,但这样的推测往往难以保证准确性。即便论文作者提供了完整的模型描述和算法逻辑,没有数据和代码作为支撑,复现其研究结果几乎是不可能的。 对于数学建模而言,代码的复现并不仅仅是将算法用计算机语言重新编写一遍那么简单,它还需要确保能够正确读取、处理数据,并且能够通过代码的执行来得到和原文相同或相近的结果。这需要对原论文的算法逻辑有深刻的理解,同时也需要具备良好的编程技能和调试能力。 此次主包团队的行动不仅展现了其对数学建模的热爱和对知识共享的重视,也为其他参赛者提供了便利,让他们能够更专注于模型的创新和问题解决的过程,而不是被数据处理和编程工作所困扰。更重要的是,这样的行为有助于推动数学建模领域内的知识交流和经验传承,有助于提升整个领域的研究水平。 然而,需要注意的是,无论是数据还是代码,都可能涉及到知识产权的问题。如果原始论文中未明确授权共享,那么这些材料的使用就可能构成侵权行为。因此,主包团队在分享这些资源时,强调了如果存在侵权问题,请联系他们删除相关内容,这体现了一种负责任的态度和对知识产权的尊重。 数学建模是一项系统而复杂的工作,它不仅要求参赛者具备扎实的数学基础和较强的编程能力,还要求他们具备良好的文献阅读能力和创新思维。通过复现优秀论文的代码,参赛者可以更好地理解模型构建的过程,掌握建模的方法和技巧,为解决实际问题打下坚实的基础。同时,这种复现工作也是对原作者工作的肯定和尊重,是科研诚信的体现。 在竞赛中,复现他人的研究成果是一门必修课。它能够帮助参赛者深入理解研究者是如何通过模型去解决特定问题的,这不仅能够加深对知识的理解,还能够激发参赛者在面对新问题时的创新灵感。通过实践操作,参赛者可以更好地把握模型的适用范围和局限性,从而在自己解决实际问题时,能够更加得心应手。 主包团队的这一行为对于2024国赛的参赛者而言,无疑是一个宝贵的学习资源。它不仅帮助参赛者节省了数据处理和代码调试的时间,还提供了一个接近实际研究过程的学习机会,有助于提高整个赛事的研究质量。同时,我们也要提醒所有参赛者,在使用这些资源时,一定要注意尊重原创者的知识产权,合规使用这些宝贵的资料。
2025-08-31 15:48:49 129KB 数学建模
1
2021年国赛b组练习
2025-08-27 14:46:57 1.21MB matlab 2021国赛
1
"2021国赛优秀论文B"是一个压缩包文件,它包含了2021年国家级竞赛中的优秀论文集。这样的资源通常包含了参赛者在建模比赛中提交的高质量研究论文,反映了参赛团队在数据分析、问题解决、模型构建和论文撰写等方面的综合能力。 "2021国赛优秀论文B.zip2021国赛优秀论文B.zip"可能是由于重复输入导致的错误描述,但可以理解为这个压缩包是关于2021年度国家竞赛优秀论文的第二部分或者是另一个版本。它可能包含了与第一部分不同的论文或者提供了更深入的分析视角。 "建模"提示了这些论文的核心内容可能涉及数学建模,这是一种运用数学工具来理解和解决实际问题的方法。在建模过程中,参赛者需要选择合适的数学模型,利用数据进行验证,并对模型的预测结果进行解释和讨论。 【文件名称列表】"B"可能代表了压缩包内的子文件夹或文件,但具体论文内容无法直接从这个信息推断。通常,这类压缩包会包含PDF格式的论文文档,每篇论文可能都有标题、摘要、方法论、结果、讨论和参考文献等部分。 建模竞赛中的论文通常涵盖以下几个知识点: 1. **问题定义**:明确实际问题,解释其重要性和背景,以及在建模中需要解决的关键点。 2. **模型选择**:介绍所采用的数学模型,如线性规划、非线性模型、统计模型、动力系统模型等,解释为什么选择该模型。 3. **模型构建**:详细阐述模型的构建过程,包括变量定义、方程建立、假设条件等。 4. **数据处理**:描述数据来源、预处理步骤(如清洗、标准化、缺失值处理)和数据分析方法。 5. **模型求解**:说明如何求解模型,可能涉及数值计算、优化算法、模拟方法等。 6. **结果分析**:展示模型的预测或解决方案,并与实际情况对比,分析误差和潜在问题。 7. **模型评估**:通过各种指标(如R²、均方误差等)评估模型的性能和适用性。 8. **模型改进与局限性**:探讨模型的局限性,提出改进策略,可能包括参数调整、引入新变量、改进算法等。 9. **应用与讨论**:讨论模型的实际应用价值,可能包括政策建议、未来研究方向等。 10. **参考文献**:列出论文引用的其他研究,体现研究的学术严谨性。 这样的论文集对学习和理解建模技术、提高问题解决能力,以及掌握科研方法有着重要的参考价值,同时也为其他领域的研究提供了启示。
2025-08-27 13:01:06 4.21MB
1
单向后方交会是测量学中的一种常用方法,用于确定地面点的坐标。在2025年的测绘程序设计国赛中,这一方法的C#实现及其公式的总结被作为实战演练的重要内容之一。通过编程实现单向后方交会,不仅可以锻炼参赛者的编程技能,还能加深其对测绘学基本原理的理解。 在进行单向后方交会之前,我们首先需要了解这一方法的基本原理。单向后方交会是指在至少两个已知点的方位上,测量未知点至已知点的方向或角度,通过计算得出未知点的坐标。这一方法适用于特定的地形测量和工程测量,比如山区、建筑物密集区域等。 在编程实现单向后方交会时,重点在于公式的运用和编程逻辑的正确实现。以下是一些关键知识点: 1. 坐标系统的建立和转换:在进行单向后方交会之前,需要建立统一的坐标系统,并掌握坐标转换的方法,如从地方坐标系转换到平面坐标系。 2. 已知点与未知点的关系:理解并计算已知点和未知点之间的距离关系,以及角度关系,是单向后方交会的关键。 3. 方向测量数据的处理:如何处理通过测量得到的方位数据,并将其与已知点的坐标相结合,计算未知点的坐标,是编程实现的核心问题。 4. 公式的应用:单向后方交会的核心公式为: \[ x = x_0 + \Delta x \] \[ y = y_0 + \Delta y \] 其中,\( (x_0, y_0) \) 是已知点的坐标,\( \Delta x \) 和 \( \Delta y \) 分别是未知点与已知点之间在 X 和 Y 方向上的坐标差。这些坐标差可以通过测量得到的角度和距离计算得出。 5. 编程语言的选择和编程技巧:选择合适的编程语言(如C#)和开发环境,运用编程技巧解决数学模型的计算问题,实现坐标解算的自动化。 6. 结果的验证和调整:编程实现后,要通过实际测量数据对程序进行验证,确保计算的准确性。在此基础上,根据实际情况对程序进行必要的调整和优化。 7. 错误处理和异常管理:在编程过程中,需要考虑到各种可能的错误和异常情况,如输入数据格式错误、测量数据误差、计算过程中的数值稳定性等,编写出健壮性高的程序。 单向后方交会的C#实现涉及到一系列测量学和编程学的知识点,对于测绘专业的学生和技术人员来说,是一个很好的综合训练项目。通过这样的实战演练,不仅可以提升个人的技术能力,还能加深对测绘专业知识的理解和应用。
2025-07-30 11:18:27 324KB
1