内容概要:本文详细介绍了车载诊断ECU(电子控制单元)的架构及其各个次的功能,包括应用、诊断、传输协议和微控制器。文章阐述了车载诊断系统的核心组成部分,如故障检测、数据读取和软件更新,并探讨了常见的通信协议(如CAN、CAN FD、Ethernet等)以及相关的国际标准(如ISO 15765系列)。文中还讨论了硬件在环(HIL)测试的重要性及其具体实现方式,以及基于AUTOSAR的诊断架构如何提高软件的复用率和可移植性。最后,文章展望了智能网联汽车中车载诊断系统的未来发展,特别是面向服务的车载诊断(SOVD)和基于入侵检测系统的高效协作与安全监控。 适合人群:汽车电子工程师、汽车维修技术人员、从事车载系统开发的技术人员及相关研究人员。 使用场景及目标:①理解车载诊断ECU的分架构及其各功能;②掌握常见通信协议和国际标准的应用;③学习HIL测试的方法及其在ECU测试中的应用;④了解基于AUTOSAR的诊断架构及其优势;⑤探索智能网联汽车中车载诊断系统的未来发展方向。 其他说明:本文不仅介绍了车载诊断ECU的技术细节,还强调了系统设计的思想和理念,如模块化、可扩展性和安全性。对于希望深入了解现代汽车电子控制系统的读者来说,本文提供了全面而深入的知识体系。
2025-08-07 18:44:01 4.13MB 车载诊断 AUTOSAR 通信协议
1
注意:如果您的公司有禁止产品中使用开放源代码的政策,则所有QP框架都可以进行,在这种情况下,您无需使用任何开放源代码许可证,也不会违反您的政策。 什么是新的? 在以下位置查看QP / C修订历史记录: : 文献资料 此特定版本的QP / C的脱机HTML文档位于文件夹html /中。 要查看脱机文档,请在Web浏览器中打开文件html / index.html。 最新版QP / C的在线HTML文档位于: : 关于QP / C QP / C(C语言中的Quantum平台)是一种轻量级的开源用于将现代嵌入式软件构建为异步的,事件驱动的(角色)系统。 框架是由 , 和框架组成的更大家
2025-08-05 23:29:24 15.33MB arm framework embedded actor-model
1
文档支持目录章节跳转同时还支持阅读器左侧大纲显示和章节快速定位,文档内容完整、条理清晰。文档内所有文字、图表、函数、目录等元素均显示正常,无任何异常情况,敬请您放心查阅与使用。文档仅供学习参考,请勿用作商业用途。 你是否渴望掌握一门强大且通用的编程语言,来推动自己的职业发展?Java 就是你的不二之选!作为一种广泛应用于企业级开发、移动应用、大数据等众多领域的编程语言,Java 以其跨平台性、高性能和丰富的类库,为开发者提供了一个稳定而高效的开发环境。
2025-08-04 11:07:36 4.13MB java
1
以锗基红外宽带增透膜(AR)为例,基于Matlab最优化工具箱,研究了多种局部优化算法在多膜设计中的性能和反向工程算法开发中的可行性,并就数值实验中出现多解性问题的成因、分析及解决方案进行了探讨。结果表明,Matlab最优化工具箱中的导数算法在多膜局部优化设计上具有更好的局部极值搜索性能和收敛速度;非导数算法性能较差且收敛时间较长,但具有更多的搜索路径,较适用于设计初期开拓搜索方向。在多膜反演中,导数算法中的非线性最小二乘估计指令lsqnonlin和非线性方程求解指令fsolve的性能出色,建议作为多膜反向工程问题的主要算法。无约束优化指令fminunc性能次之,约束优化指令fmincon再次之,可作为备用反演算法。而多目标优化指令fminimax和其余非导数算法由于算法的性能不足和自身内在多解性的原因,不利于多膜的反演,容易得到错误的结果,不建议作为反演算法使用,仅可作为可选算法以供对比参考。
2025-08-02 18:30:23 3.85MB 薄膜光学 反向工程 局部优化
1
Expert Choice 分算法工具Expert Choice 分算法工具
2025-08-02 14:59:02 56.62MB 分层算法
1
内容概要:本文深入解析了一个经过实车验证的新能源汽车VCU(整车控制器)应用Simulink模型。该模型涵盖了高压上下电、车辆蠕行、驻坡功能等多个关键模块。高压上下电模块通过状态机实现预充控制,确保安全可靠的电力供应;车辆蠕行模块利用动态扭矩分配算法,优化驾驶体验;驻坡功能则通过坡度传感器和温度补偿机制,确保车辆在坡道上的稳定性。此外,模型还包括能量管理模块,采用安时积分和开路电压联合校正方法提高SOC估算精度。每个模块都带有详细的标定策略文档,记录了大量实战经验和调试细节。 适合人群:从事新能源汽车控制系统开发的技术人员,尤其是对VCU应用建模感兴趣的工程师。 使用场景及目标:帮助工程师理解和掌握新能源汽车VCU应用的设计思路和技术细节,加速新项目的开发进程。具体应用场景包括高压上下电控制、蠕行控制、驻坡功能以及能量管理等方面。 其他说明:模型已通过30万公里的实车测试,具备高度可靠性和实用性。附带的标定文档详尽记录了各个模块的调试过程和关键参数设置,有助于快速复现和优化现有功能。
2025-07-22 17:01:52 1.19MB Simulink
1
内容概要:本文档详细解析了MTK摄像头架构,重点介绍了HAL和Kernel驱动的功能与实现细节。HAL主要负责传感器电源控制及相关寄存器操作,而Kernel驱动则通过imgsensor.c控制传感器的上下电及其具体操作。驱动程序分为两部分:imgsensor_hw.c负责电源管理,xxxmipiraw_sensor.c负责传感器参数配置。传感器数据经由I2C接口传输至ISP处理并保存至内存。文档还深入探讨了帧率调整机制,即通过修改framelength来间接调整帧率,并展示了关键结构体如imgsensor_mode_struct、imgsensor_struct和imgsensor_info_struct的定义与用途。此外,文档解释了传感器驱动的初始化过程,包括入口函数注册、HAL与驱动之间的交互流程,以及通过ioctl系统调用来设置驱动和检查传感器状态的具体步骤。 适合人群:具备一定嵌入式系统开发经验,尤其是对Linux内核有一定了解的研发人员,特别是从事摄像头模块开发或维护工作的工程师。 使用场景及目标:①理解MTK摄像头架构的工作原理,特别是HAL和Kernel驱动的交互方式;②掌握传感器驱动的开发与调试方法,包括电源管理、参数配置和帧率调整;③学习如何通过ioctl系统调用与内核模块进行通信,确保传感器正确初始化和运行。 阅读建议:此文档技术性强,建议读者在阅读过程中结合实际代码进行实践,重点关注传感器驱动的初始化流程、关键结构体的作用以及帧率调整的具体实现。同时,建议读者熟悉Linux内核编程和I2C通信协议,以便更好地理解和应用文档中的内容。
2025-07-22 14:01:05 15KB Camera驱动 Kernel开发 I2C
1
在Android操作系统中,硬件抽象(Hardware Abstraction Layer,简称HAL)是系统架构中的一个重要组成部分,它位于上应用程序框架和底硬件驱动之间,起到承上启下的作用。HAL为Android的各种服务和应用提供了一个标准化的接口,使得上代码无需直接与硬件交互,而是通过调用HAL提供的API来实现对硬件资源的访问。这样做的好处在于增强了系统的可移植性,因为不同的硬件平台只需提供相应的HAL实现即可。 "android 硬件抽象点灯"这个项目,可能是为了帮助开发者更好地理解HAL的工作原理,通过一个简单的点灯程序来形象地展示Android如何通过HAL与硬件进行通信。在Android设备上,LED灯是一种常见的硬件资源,通过控制LED的亮灭可以直观地看到操作结果。 在点灯程序中,开发者会编写特定于硬件的驱动程序,这部分通常用C或C++编写,直接与硬件进行交互,例如控制GPIO引脚来开关LED灯。然后,这些驱动程序会被封装到一个符合Android HAL接口规范的库中,这个库提供了供上调用的函数,如`led_on()`和`led_off()`。 接下来,在Android系统的框架,会有一个对应的LED服务,它调用HAL提供的API来控制LED的状态。这个服务可能属于系统服务或者是由开发者自定义的,它会通过JNI(Java Native Interface)与HAL库进行通信,将Java的指令转换成对C/C++库的调用。 在项目中,`mokoid`可能是指具体的示例代码或者库文件,包含了实现点灯功能的源码。用户可以通过阅读和分析这些代码,了解如何在Android系统中构建和使用HAL,以及如何处理硬件操作。 通过这个实例,开发者不仅可以学习到如何编写和集成HAL,还能深入理解Android的分架构,包括应用程序、应用程序框架、系统运行库和Linux内核。此外,还能了解到如何在不同级间进行通信,如JNI的使用、服务的创建和系统调用等。 "android 硬件抽象点灯"是一个很好的教学案例,它将抽象的概念转化为实际操作,有助于提升开发者对于Android系统底机制的理解,特别是对于那些想要从事Android系统开发或者驱动开发的工程师来说,这是一个非常有价值的实践项目。
2025-07-21 17:24:08 12KB android hardware
1
因最近研究SI PI仿真,计划整理笔记目录,有错误的地方大家一定帮忙指正指导哈。 ➢1.ALLEGRO PCB叠介绍与详细设置 ➢2.Sigrity POWER Si工具提取S参数 ➢3.Sigrity 眼图仿真 ### ALLEGRO & SIGRITY SI PI 仿真基础及教程 Part1:叠介绍 #### ALLEGRO PCB叠介绍与详细设置 **叠参数:** - **Layer Function**:叠功能设定,主要包括: - **Conductor**:用于设置走线,此主要用于布设信号线和电源线。 - **Dielectric**:介电,位于各导电之间,起到绝缘作用。 - **Plane**:平面,通常作为电源或者地使用,有助于提高电路板的稳定性。 - **Material**:材料选择,包括但不限于: - **COPPER**:铜皮,作为导电材料使用。 - **FR – 4**:一种常见的玻璃纤维强化环氧树脂板,具有良好的介电性能和机械强度。 - **Embedded**:是否使用埋入式器件,这在高端电路板设计中较为常见,可有效缩短信号路径,降低噪声和电磁干扰(EMI)。 - **Thickness**:厚度设置,依据板厂推荐值或具体项目需求进行调整。 **示例参数:** - 四、六、八板的推荐参数会有所不同,需要根据具体的制造商建议进行配置。 **材料选择:** - **Conductor**:常见的铜皮厚度包括1oz, 0.5oz等,应根据实际项目的功率要求和信号完整性需求选择合适的厚度。 - **Dielectric**:介电材料的选择也非常重要,例如FR-4、铝基板或PTFE等,每种材料都有其独特的特性,需根据项目的特殊需求做出合理选择。 #### ALLEGRO PCB叠参数详解 - **Conductivity**:电导率,反映了材料导电能力的强弱,单位通常是mho/cm。例如,纯铜的电导率为596000 mho/cm,如果使用其他材料,则需要根据实际参数填写。 - **Dielectric Constant**:介电常数,是衡量材料介电性能的关键指标,它直接影响了信号传输的质量和效率。例如,空气的相对介电常数大约为1.00053,而FR-4的介电常数大约为4.623。 #### SIGRITY POWER Si 工具提取S参数 **S参数**是描述微波网络的一种方法,特别是在射频和微波工程领域极为重要。Sigrity的POWER Si工具能够精确地提取S参数,这对于评估和优化信号完整性至关重要。 - **过程概述**:利用该工具可以从电路板设计中提取出S参数数据,进而分析电路板的反射和传输特性。 - **应用场景**:适用于射频电路、高速数字电路等需要高度关注信号完整性的场合。 #### Sigrity眼图仿真 **眼图仿真**是评估高速信号质量的一种直观方法,可以帮助工程师快速识别信号完整性问题,比如反射、串扰等。 - **仿真过程**:通过设置不同的输入条件,比如信号速率、阻抗匹配等,观察眼图的变化。 - **关键指标**:眼高、眼宽、抖动等,这些指标可以帮助判断信号的质量。 - **应用场景**:适用于高速接口设计,如DDR内存、PCIe接口等。 ### 总结 通过本篇教程的学习,我们了解了ALLEGRO中PCB叠的设置方法及其重要性,同时也介绍了如何使用SIGRITY工具进行S参数提取和眼图仿真。这些技能对于进行高速电路板的设计和优化至关重要。通过掌握这些知识,可以显著提高电路板的性能和可靠性,同时减少调试和优化的时间成本。 以上内容基于提供的文档摘要进行了详细扩展和解释,希望能帮助读者更好地理解和应用这些重要的IT知识点。
2025-07-18 13:10:46 1.97MB 课程资源 Sigrity仿真 ALLEGRO仿真
1
内容概要:本文详细介绍了利用Matlab实现一维状声子晶体振动传输特性的传递矩阵法仿真。首先定义了铝合金和橡胶这两种材料的基本参数,如弹性模量、密度和厚度。接着阐述了传递矩阵法的核心思想,即通过矩阵运算将复杂多结构分解为单传递矩阵并进行连乘,从而计算出整个系统的振动传递特性。文中还探讨了不同参数(如材料厚度、周期数)对带隙位置和宽度的影响,并提供了具体的代码实现方法。此外,文章指出了传递矩阵法的应用场景及其局限性,强调了其在振动控制领域的实用性。 适合人群:具有一定数学和编程基础的研究人员和技术人员,特别是从事声子晶体研究和振动控制工程的人士。 使用场景及目标:适用于需要理解和掌握传递矩阵法在声子晶体振动传输特性分析中的应用场合。主要目标是帮助读者学会如何使用Matlab搭建一维状声子晶体模型,理解带隙现象背后的物理机制,并能够根据具体需求调整材料参数以达到预期的振动控制效果。 其他说明:本文不仅提供了详细的理论讲解,还包括了完整的代码实例,便于读者动手实践。同时提醒读者注意一些常见的陷阱,如矩阵乘法顺序以及数值稳定性等问题。
2025-07-15 22:26:25 477KB
1