基于形状匹配和嵌入的3D车道线检测算法 本文提出了一种基于双层次形状注意力网络(DSANet)的3D车道检测算法,该算法由两个分支组成,一个分支预测细粒度路段形状和对近似车道实例形状进行编码的形状嵌入,另一个分支检测车道实例的粗粒度结构。通过引入两级形状匹配损失函数,对两个分支输出的形状参数进行联合优化,提高了训练精度。 在BEV-3DLanes数据集上的实验表明,我们的方法优于以前的方法,具有出色的准确性,特别是在更高的精度标准。我们的方法可以检测高精度的3D车道,具有广泛的实际应用前景,如车道偏离警告、车道保持辅助、车辆导航和高清地图构建等。 该算法的主要贡献包括:开发了一种新型的双层形状注意力网络(DSANet),该网络具有两个分支,融合了局部和全局层面的上下文信息,以检测高精度的3D车道;提出了简单有效的车道形状双层表示和相应的形状匹配约束,分别预测细粒度路段形状和粗粒度实例形状;设计了一个形状引导的片段聚合器,将柔性片段聚类成实例,实例形状作为显式聚类中心。 在现有的基于LiDAR和基于图像的车道检测方法中,本文的算法具有出色的准确性和速度优势。与基于分割的方法相比,本文的算法无需密集的注释和冗余的预测,可以实现快速和高效的车道检测。 在自动驾驶中,3D车道检测是一项重要的视觉感知任务,提供了厘米级的位置、精确的几何形状以及本车道和相邻车道的实例级信息。随着自动驾驶技术的发展,高精度的3D车道检测将变得越来越重要。 在基于LiDAR点云的3D车道检测中,需要精确的位置、准确的拓扑结构和可区分的实例。在本文中,我们提出了一种基于双层次形状注意力网络(DSANet)的解决方案,该网络具有两个分支,一个分支预测细粒度路段形状和对近似车道实例形状进行编码的形状嵌入,另一个分支检测车道实例的粗粒度结构。 在本文的算法中,我们引入了一种形状匹配和嵌入损失函数,对两个分支输出的形状参数进行联合优化,提高了训练精度。此外,我们还设计了一个形状引导的片段聚合器,将柔性片段聚类成实例,实例形状作为显式聚类中心。 本文提出了一种基于双层次形状注意力网络(DSANet)的3D车道检测算法,该算法具有出色的准确性和速度优势,能够检测高精度的3D车道,具有广泛的实际应用前景。
2025-08-17 13:45:06 2.02MB
1
"基于自研模板匹配技术的动态库解决方案:涵盖变形、透视及形状匹配功能,支持C++与C#语言开发,可替代Halcon产品",自研模板匹配,变形、透视匹配,形状匹配C++ C#动态库,halcon替代 ,自研模板匹配; 变形透视匹配; 形状匹配; C++ C#动态库; Halcon替代,自研高精度模板匹配与变形透视库:C++/C#动态库,超越Halcon技术 随着计算机视觉和图像处理技术的发展,模板匹配作为一项重要的基础技术,在许多领域如工业自动化、医学图像处理、安防监控等方面得到了广泛应用。模板匹配主要指的是利用一种特定的算法来搜索图像中与给定模板匹配或相似的区域。传统的模板匹配方法虽然在一定条件下能够满足需求,但其局限性在于处理变形、透视变化以及形状匹配问题时,效果往往不尽如人意。因此,开发一种能够在多种复杂情况下依然保持高精度匹配的动态库解决方案显得尤为重要。 在这项技术的应用中,自研模板匹配技术的动态库解决方案的推出,无疑为行业带来了新的选择。该方案不仅能够实现对图像的变形匹配、透视匹配,还支持形状匹配,其技术实力已达到或超越了国际上广泛认可的图像处理软件Halcon。Halcon作为一个广泛使用的商业软件包,提供了丰富的图像处理和分析功能,而本方案的推出意味着用户将有更多选择的可能性。 本解决方案的特点在于其支持多种编程语言,特别是C++与C#语言的开发支持,为开发者提供了极大的便利。这对于那些熟悉或偏好这两种语言的开发者来说,意味着可以在现有的开发环境中无缝接入,提高开发效率。此外,由于C++和C#语言的广泛使用,本解决方案的适用范围也得以大幅扩大,不仅限于专业的图像处理领域,甚至可以渗透到通用的软件开发之中。 在技术支持方面,该动态库的推出不仅仅是一个简单的软件产品,更是对相关技术细节的深入封装,使得开发者不必对底层复杂的图像处理算法有深入的理解,也能够轻松实现高精度的模板匹配。从技术实现的角度来看,该方案通过对传统算法的改进和创新,突破了变形、透视及形状匹配的限制,为模板匹配技术的发展提供了新的思路和可能性。 从应用的角度来讲,该解决方案在工业检测、医疗影像分析、安全监控等场景中具有极大的应用潜力。例如,在工业生产中,可以通过实时监控生产线上的产品图像,并与预设的标准模板进行匹配,从而及时发现产品缺陷,保证产品质量。在医疗影像分析方面,通过与病变图像的模板进行匹配,可以辅助医生更快地诊断疾病。安全监控系统也可以利用该技术实现对监控区域中特定对象的识别与追踪,提高系统的智能化水平。 这项基于自研模板匹配技术的动态库解决方案,提供了一个多方位、高效能的图像处理工具,其在变形、透视及形状匹配功能方面的突出表现,支持多语言开发的便利性,以及其对Halcon产品技术上的超越,使其成为了计算机视觉和图像处理领域的一个重要里程碑。这对于推动相关技术的进步,以及相关行业的发展,都具有深远的影响。
2025-07-18 08:51:07 1008KB xbox
1
**多尺度傅里叶描述子(Multiscale Fourier Descriptor, MFD)**是一种在图像处理和计算机视觉领域中用于形状分析和描述的技术。它基于经典的傅里叶变换理论,通过在不同尺度上对图像边缘进行傅里叶变换来提取形状特征,从而实现对复杂形状的精确描述和匹配。 傅里叶描述子(Fourier Descriptor)源于傅里叶分析,它是将离散图像轮廓转换到频域,利用傅里叶变换得到图像形状的频率表示。这种表示方式可以捕捉到形状的周期性和旋转不变性,对于形状识别和匹配具有重要意义。在单尺度傅里叶描述子中,通常是对整个图像轮廓进行变换,但在多尺度情况下,会先对图像进行分段或缩放,然后在每个尺度上分别进行傅里叶变换,以获取更丰富的形状信息。 **形状描述**:在图像分析中,形状描述是关键步骤,它需要准确地提取出图像中的物体边界,并用一组数值特征来表示这些形状。多尺度傅里叶描述子能够提供这样的描述,它通过不同尺度下的频域信息,能够捕捉到形状的细节变化,无论是大范围的形状特征还是微小的局部细节。 **模式识别**:在多尺度傅里叶描述子的应用中,模式识别是一个重要领域。通过对不同形状的多尺度傅里叶表示进行比较,可以有效地识别和分类不同的图像模式,如物体、纹理等。这种方法在识别系统中尤其有用,因为它对形状的旋转、缩放和噪声有较好的鲁棒性。 **形状匹配**:形状匹配是图像处理中的另一项关键技术,常用于图像检索、目标检测和跟踪等任务。多尺度傅里叶描述子在形状匹配中的优势在于其尺度不变性,即无论物体在图像中的大小如何,其傅里叶描述子都能保持相似,这大大提高了匹配的准确性和稳定性。 在压缩包中的"多尺度傅里叶描述子"可能包含源代码、算法实现、示例数据和相关文档,这些都是为了帮助用户理解和应用MFD。通过这些资源,开发者和研究人员可以学习如何使用多尺度傅里叶描述子进行形状分析,包括如何进行图像预处理、如何提取边缘、如何进行多尺度变换以及如何计算和比较描述子以实现形状匹配。 多尺度傅里叶描述子是一种强大的工具,它在图像分析、模式识别和形状匹配等领域有着广泛的应用,其优点在于能够处理形状的复杂性,同时保持对形状变化的敏感性和对噪声的抵抗力。通过深入理解并熟练运用这一技术,可以解决很多实际问题,提高计算机视觉系统的性能。
1
"OpenCV与Qt框架下,智能卡尺工具的设计与实现:带X、Y及角度纠偏的图像处理与形状匹配算法研究",基于OpenCV与QT的卡尺工具:工具跟随、精准定位、自动纠偏及图像处理全套源码与学习资料,基于opencv与qt开发的卡尺工具,卡尺工具,具有工具跟随功能,找线找圆工具可以根据形状匹配位置定位实现带X、Y以及角度偏差的自动纠偏,图像采集,图像处理,卡尺工具,找线,找圆,颜色检测,模板匹配,形状匹配,海康工业相机采集+基于形状的模板匹配界面,提前说明,形状匹配算法和找线找圆算法封装成dll直接调用的,其他都是源码,是不错的学习资料,程序资料 ,基于opencv与qt开发; 卡尺工具; 工具跟随功能; 形状匹配; 定位; 自动纠偏; 图像采集; 图像处理; 找线; 找圆; 颜色检测; 模板匹配; 海康工业相机采集; 形状匹配算法封装dll; 程序资料,OpenCV与Qt卡尺工具:图像处理与形状匹配的智能解决方案
2025-04-08 11:45:46 230KB
1
基于机器视觉的加工控制过程中,对工件上待加工点的定位是关键,其难点在于构建一种形状描述方法,既要能实现形状匹配,又要能完成定位,且满足加工过程中的精度和实时性要求。为解决上述问题,提出了一种基于多边形拟合的形状匹配和定位算法。该方法针对平面二维(2D)轮廓,通过对轮廓进行多边形拟合,获取轮廓上关键点,然后构建形状描述子用于形状匹配,再利用这些关键点坐标进行定位计算,获得模板轮廓到目标轮廓的变换关系。结果表明,通过运用所提出的旋转不变性形状描述算法,可获得高精度、高实时性的形状匹配和定位算法。
2022-08-09 09:08:41 1.81MB 机器视觉 形状匹配 定位 多边形拟
1
随着三维扫描技术的迅猛发展, 点云数据的数据量变得异常庞大, 这对点云计算的性能提出了更高的要求。因此, 如何有效提高算法的执行效率一直是该领域的研究热点和难点。日益增大的数据量隐藏了丰富的三维(3D)形状模型, 将形状模型参与到点云计算过程中, 为提高点云计算的执行效率提供了一种新的方法和思路。利用3D几何特征分析技术, 获取与形状相关的特征参数, 并使其参与到点云分割过程中, 提出了形状分割方法。利用八叉树算法组织点云数据, 发现数据之间的相邻关系, 依靠点云数据的密度自适应地双向线性调整八叉树并建立数据索引。使用规则图形建立3D形状模型库, 实现模型与分割区域的匹配, 进而提取分割区域的形状参数, 为提高点云数据计算的精度和速度奠定基础。在分割效果和分割时间上, 对比了不同算法, 验证了基于形状的点云分割算法的可行性以及稳健性。
2022-06-03 21:04:41 11.69MB 图像处理 点云数据 区域分割 主成分分
1
matlab ransac代码ShapeContexts 用于形状匹配和点对应的形状上下文。 忠实地实现了Belongie,Malik和Puzicha的“形状上下文”。 基于玫瑰直方图之间的卡方距离。 入门 这个小项目是Belongie,Malik和Puzicha的“形状上下文”的忠实实现。 它们可用于形状匹配以及从一个形状到另一个形状的点对应。 该方法计算从一个形状的玫瑰直方图到另一形状的玫瑰直方图的推土机距离,每个点一个直方图。 函数“ munkres.m”由曹操编写,最初是从这里开始的: 先决条件 为此,您需要在以下工具箱中安装Matlab:-image_toolbox -statistics_toolbox 如果要运行test_ransac.m,则必须安装Kovesi的matlab软件包,可以在这里找到它们: 版本控制 这是版本1,相当慢,将来我计划编写CUDA版本或它以及直方图的更新机制。 作者 阿德里安·萨特马里(Adrian Szatmari) 执照 此项目已获得MIT许可证的许可-有关详细信息,请参见文件 致谢 非常感谢Peter Kovesi和Yi Cao公开提供了他
2022-04-03 16:37:12 1.62MB 系统开源
1
idsc_shapematching 林海滨的形状匹配算法 我在此算法中解决了两个问题。 第一个是他的角度矩阵,该角度矩阵是在bellman_ford中计算的。 我认为矩阵是错误的,因为它无法实现旋转不变性和缩放不变性。 当我对矩阵求逆时,它可以! 好吧,这意味着当您旋转大象并获得Elephant2时,两个轮廓Elephant1和Elephant2的匹配度应接近100%。 如果我不对矩阵求逆,则匹配点为70或80或更小。 但是当我进行反演时,匹配点达到98 99! 我使用spfa优化bellman_ford。 其次,我解决了对称性问题。 它在Elephant.bmp和Elephant34.bmp中显示。
2021-11-17 09:57:13 156KB MATLAB
1
形状匹配数据集;kimia99 mpeg-7
2021-11-10 20:59:29 18.89MB 机器学习
1
实现模板匹配算法,在待测图像中寻找模板区域,计算中心点,角度。模板和待检测图像中的ROI区域大小不一致,光照不一致。识别率100%。抗干扰能力强。是个非常好的例子。
1