只为小站
首页
域名查询
文件下载
登录
采用紫外线和
微波
处理法选育万古霉素高产菌株
以东方拟无枝酸菌(Amycolatopsisoriental)V30为出发菌株,经过紫外线、
微波
复合诱变,选育得到万古霉素高产菌株V311-04,较出发菌摇瓶单位提高7%以上,并且有良好的遗传稳定性。
2025-07-23 12:23:23
192KB
行业研究
1
超宽带0.5-6GHz一分二功分器及其
微波
器件的ADS仿真与参数化设计 RF电路设计
内容概要:本文详细介绍了超宽带0.5-6GHz一分二功分器及其相关
微波
器件(如合路器、耦合器、滤波器等)的参数化设计与ADS仿真方法。文中强调了功分器在无线通信、卫星接收、网络设备等领域的重要应用,并深入探讨了ADS仿真的具体操作流程和技术细节,包括阻抗变换、参数化建模、仿真验证等环节。此外,还提供了一个MATLAB代码片段,展示了如何利用ADS进行功分器设计的参数化建模和仿真验证。 适合人群:从事射频电路设计、
微波
工程及相关领域的工程师和技术人员。 使用场景及目标:适用于需要深入了解超宽带一分二功分器设计原理和仿真技术的研究人员,旨在帮助他们掌握ADS仿真工具的使用方法,提高设计效率和精度。 其他说明:本文不仅提供了理论指导,还结合实际案例进行了详细的步骤解析,有助于读者更好地理解和应用所学知识。
2025-07-10 16:18:31
1.49MB
1
Z矩阵、Y矩阵、A矩阵、S矩阵、T矩阵定义、推导及转换公式
###
微波
网络中的参数矩阵定义、推导及其转换 #### 一、Z矩阵(阻抗矩阵) 在
微波
工程领域,二端口网络是非常重要的组成部分。为了方便分析和计算,引入了不同的参数矩阵来描述这些网络的行为。首先介绍的是**Z矩阵**。 **定义:** Z矩阵用于描述端口电压与端口电流之间的关系。对于一个二端口网络,假设其两个端口的电压分别为\(U_1\)和\(U_2\),对应的电流分别为\(I_1\)和\(I_2\),则可以定义Z矩阵如下: \[ \begin{align*} U_1 &= Z_{11}I_1 + Z_{12}I_2 \\ U_2 &= Z_{21}I_1 + Z_{22}I_2 \end{align*} \] 或者用矩阵形式表示为: \[ \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} \] **特殊性质:** - **对于互易网络**:\(Z_{12} = Z_{21}\) - **对于对称网络**:\(Z_{11} = Z_{22}\) - **对于无耗网络**:每个元素都可以表示为纯虚数,即\(Z_{ij} = jX_{ij}\),其中\(X_{ij}\)为实数。 **归一化阻抗矩阵**: 为了进一步简化计算,通常会定义归一化的电压和电流,以及相应的归一化阻抗矩阵。设归一化电压和电流为\(u\)和\(i\),则它们与未归一化的电压和电流之间的关系为: \[ \begin{align*} u &= \frac{U}{Z_0} \\ i &= \frac{I}{Z_0} \end{align*} \] 其中\(Z_0\)为参考阻抗。由此,我们可以得到归一化的Z矩阵为: \[ \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} \] 这里的\(z_{ij}\)是归一化后的阻抗矩阵元素。 #### 二、Y矩阵(导纳矩阵) **定义:** Y矩阵是用来描述端口电流与端口电压之间的关系的。对于二端口网络,Y矩阵定义为: \[ \begin{align*} I_1 &= Y_{11}U_1 + Y_{12}U_2 \\ I_2 &= Y_{21}U_1 + Y_{22}U_2 \end{align*} \] 或用矩阵形式表示为: \[ \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} \] **特殊性质:** - **对于互易网络**:\(Y_{12} = Y_{21}\) - **对于对称网络**:\(Y_{11} = Y_{22}\) - **对于无耗网络**:每个元素都是纯虚数,即\(Y_{ij} = jB_{ij}\),其中\(B_{ij}\)为实数。 **归一化导纳矩阵**: 同样地,可以定义归一化的电压和电流,并据此定义归一化的导纳矩阵。设归一化电压和电流为\(u\)和\(i\),则有: \[ \begin{align*} u &= \frac{U}{Z_0} \\ i &= \frac{I}{Z_0} \end{align*} \] 归一化的Y矩阵为: \[ \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \] 这里的\(y_{ij}\)是归一化后的导纳矩阵元素。 #### 三、A矩阵(散射参数矩阵) A矩阵主要用于描述网络内部的信号传输情况,尤其是信号在不同端口间的传输关系。它通过定义网络输入和输出端口的电压电流比来描述网络特性。A矩阵的定义如下: \[ \begin{align*} \begin{bmatrix} U_1' \\ I_1' \end{bmatrix} &= \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} U_2 \\ -I_2 \end{bmatrix} \end{align*} \] 其中\(U_1'\)和\(I_1'\)分别表示网络输入端口的电压和电流,\(U_2\)和\(-I_2\)分别表示网络输出端口的电压和负电流。 **特殊性质:** - **对于互易网络**:\(A_{12} = -A_{21}\) #### 四、S矩阵(散射矩阵) S矩阵是
微波
工程中最常用的参数之一,用来描述二端口网络的散射特性。它定义了网络输入端口和输出端口之间反射和透射的比率。S矩阵的定义如下: \[ \begin{align*} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} &= \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} \end{align*} \] 其中\(a_i\)和\(b_i\)分别表示入射波和反射波的幅度。 **特殊性质:** - **对于互易网络**:\(S_{12} = S_{21}\) #### 五、T矩阵(传输参数矩阵) T矩阵,也称为传输参数矩阵,用于描述信号在二端口网络内部的传输特性。它可以直观地表示信号从一个端口到另一个端口的传输情况。T矩阵定义如下: \[ \begin{align*} \begin{bmatrix} U_2 \\ I_2 \end{bmatrix} &= \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} \begin{bmatrix} U_1 \\ I_1 \end{bmatrix} \end{align*} \] **特殊性质:** - **对于互易网络**:\(T_{11}T_{22} - T_{12}T_{21} = 1\) ### 参数矩阵之间的转换 不同参数矩阵之间可以通过特定的数学变换进行转换,以便于根据实际应用场景选择最适合的参数矩阵进行分析和设计。以下是一些基本的转换公式: - **Z到Y**: \[ \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix}^{-1} \] - **Y到Z**: \[ \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix}^{-1} \] - **Z到S**: \[ \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} = \begin{bmatrix} \frac{Z_{11}-Z_0}{Z_{11}+Z_0} & \frac{2Z_{12}}{Z_{11}+Z_{22}+Z_0} \\ \frac{2Z_{21}}{Z_{11}+Z_{22}+Z_0} & \frac{Z_{22}-Z_0}{Z_{22}+Z_0} \end{bmatrix} \] - **S到Z**: \[ \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} = Z_0 \begin{bmatrix} \frac{1+S_{11}}{1-S_{11}} & \frac{2S_{12}}{1-S_{11}S_{22}} \\ \frac{2S_{21}}{1-S_{11}S_{22}} & \frac{1+S_{22}}{1-S_{22}} \end{bmatrix} \] 通过上述定义和转换,可以灵活地在不同参数矩阵间进行切换,从而更好地理解
微波
网络的工作原理,并为其设计提供理论支持。
2025-06-21 22:06:06
713KB
微波工程
1
重庆大学
微波
实验内容
重庆大学的
微波
实验是电磁学领域中的一个重要实践环节,主要涵盖了
微波
理论与技术的基础应用。通过这些实验,学生可以深入理解
微波
的基本性质、传播特性以及在通信、雷达和电子设备中的应用。
微波
实验通常涉及多个关键知识点,包括但不限于: 1. **
微波
基础理论**:
微波
是指频率在300MHz(0.3GHz)到300GHz之间的电磁波。它们具有短波长、高频率的特点,因此在天线设计、无线通信、遥感和
微波
加热等领域有广泛应用。 2. **
微波
测量技术**:实验中可能会用到诸如网络分析仪、功率计、示波器等仪器,用于测量
微波
信号的幅度、相位、频率和衰减等参数。学生需要学习如何正确操作这些设备并解读测量结果。 3. **
微波
器件**:常见的
微波
实验可能涉及
微波
滤波器、谐振器、混频器、放大器等器件。理解这些器件的工作原理和性能指标对于设计
微波
电路至关重要。 4. **
微波
传输线**:如波导、同轴线、微带线等,它们是
微波
信号传输的重要载体。学生需要了解各种传输线的特性,包括特性阻抗、衰减和截止频率等。 5. **
微波
天线**:实验中可能涉及不同类型的天线,如偶极子天线、抛物面天线、微带天线等。学习天线辐射特性、增益和方向图等概念,有助于设计和优化
微波
通信系统。 6. **
微波
电路设计**:如
微波
混频器、频率合成器等,这些电路在现代通信系统中起着核心作用。实验中会教授如何利用
微波
元器件设计和分析电路。 7. **
微波
实验技巧**:包括实验安全、设备保养、数据记录和处理等方面,这些都是实验过程中不可或缺的部分。 8. **实验报告撰写**:学生需要学会将实验过程、观察结果和理论分析整理成报告,这有助于培养科学的思维方式和表达能力。 9. **射频与
微波
工程软件**:如HFSS、ADS等,这些软件在
微波
电路设计中广泛使用,学生应掌握基本操作和应用。 10. **问题解决与创新**:实验不仅是验证理论的过程,也是发现问题、解决问题和进行创新的机会。通过实验,学生可以锻炼独立思考和团队合作的能力。 通过重庆大学的
微波
实验,学生将全面系统地掌握
微波
领域的基本知识,并为未来从事相关工作或研究打下坚实的基础。实验内容的详细性确保了学生能够深入理解
微波
物理现象,提高实际操作技能,为今后的学术研究或职业生涯做好准备。
2025-06-20 15:47:47
956KB
重庆大学
1
用ADS进行宽带
微波
功放的仿真设计
### 用ADS进行宽带
微波
功放的仿真设计 #### 引言 现代通信对抗系统中,宽带
微波
功率放大器(以下简称“宽带功放”)的应用日益广泛。这类放大器通常要求具备较宽的工作频带(至少一个倍频程以上),以及较高的输出功率(从几十瓦至数百瓦)。然而,国内对于此类宽带功放的设计与研发仍处于初级阶段。相比之下,西方国家在这一领域已拥有较为成熟的技术和产品。例如,OPHIR公司和PST公司均推出了工作在1-2GHz频段、输出功率达100W甚至200W的产品。目前国内市场上的宽带功放大多依赖进口,不仅价格昂贵,且存在供应不稳定的风险。因此,发展自主设计能力显得尤为重要。 #### ADS技术在宽带
微波
功放设计中的应用 为了克服宽带功放设计中的技术挑战,本文介绍了一种利用高级设计系统(Advanced Design System,简称ADS)进行宽带
微波
功放模块设计的方法。ADS是一款强大的
微波
电路仿真软件,能够支持从电路级到系统级的全方位设计和仿真。下面将详细介绍如何使用ADS技术实现宽带功放的设计。 #### 设计步骤 1. **器件选择**:需选择合适的
微波
单电子晶体管(MESFET)作为放大器的核心元件。由于市场上可用的功放管型号有限,尤其是高性能的定制型号更为稀缺,因此设计师需要根据现有资源进行合理选择。 2. **器件建模**:获取所选MESFET功放管的静态IV特性和小信号s参数,用于建立器件模型。这些参数对于后续的电路优化至关重要。 3. **匹配网络设计**:基于器件模型,利用ADS的优化工具设计输入输出匹配网络。目标是使放大器在整个工作频带上实现最大输出功率和最小端口反射系数。此步骤通常需要多次迭代以达到最佳性能。 4. **非线性仿真**:虽然理想情况下应使用大信号模型进行非线性仿真,但在实际操作中往往只能获得小信号模型。此时,可以采用逐级优化的方法,先确保匹配网络满足基本的性能指标,再通过调整关键参数来改善非线性失真和互调产物。 5. **整体电路仿真与优化**:完成匹配网络的设计后,进行整个电路的仿真。这包括检查增益平坦度、噪声系数等关键性能指标是否满足要求。如果有必要,还需进一步调整匹配网络或器件参数。 6. **实物验证**:最终设计完成后,制作实物原型并进行测试验证。通过对比仿真结果与实际测试数据,评估设计的有效性,并据此进行必要的调整。 #### 结论与展望 本文提出了一种利用ADS技术设计宽带
微波
功放模块的方法,并通过一个1-2GHz频段、输出功率为10W的功放模块设计实例进行了具体阐述。这种方法不仅有助于提高宽带功放的设计效率,还能有效降低成本。随着国内科研人员对该技术的不断探索与实践,相信未来在宽带
微波
功放的设计领域将取得更多突破性进展。 ### 关键词 - ADS技术 - MESFET功放管 - 宽带功率放大器
2025-05-30 15:35:00
297KB
1
超宽带0.5-6GHZ一分二功分器与多种
微波
器件参数化设计,使用ADS仿真,阻抗变换细致入微,具体性能指标灵活调整,超宽带0.5-6GHZ一分二功分器,使用ADS仿真设计,全部参数化建模,可以任意修改
超宽带0.5-6GHZ一分二功分器与多种
微波
器件参数化设计,使用ADS仿真,阻抗变换细致入微,具体性能指标灵活调整,超宽带0.5-6GHZ一分二功分器,使用ADS仿真设计,全部参数化建模,可以任意修改,10节阻抗变,具体指标如图所示: 还可以做合路器,耦合器,滤波器,功率放大器,低噪声放大器,Doherty功率放大器。 ,核心关键词: 超宽带一分二功分器; ADS仿真设计; 参数化建模; 阻抗变换; 具体指标; 合路器; 耦合器; 滤波器; 功率放大器; 低噪声放大器; Doherty功率放大器。,超宽带参数化功分器与多类射频组件设计应用
2025-05-28 22:14:58
1.02MB
哈希算法
1
RFID阅读器中信道选择滤波器的设计
射频识别(RFID)技术在无线通信领域中扮演着重要的角色,特别是在UHF频段,它能在几十米的距离内实现数百千比特每秒(kbps)的数据传输速度,这比LF和HF频段的RFID技术具有更远的读取范围和更高的传输速率。UHF RFID阅读器遵循EPC Global C1G2协议,其接收数据速率可高达640 kbps,信号带宽最大不超过1.28 MHz。对于最低40 kbps速率,信号带宽小于250 kHz。因此,设计的信道选择滤波器需要有0.3到1.3 MHz的可调带宽。 信道选择滤波器的主要任务是过滤掉不必要的信号,确保RFID通信的清晰性和稳定性。根据传输掩模规定,相邻信道间的功率差需达到40 dB,这意味着滤波器必须能有效抑制高于本信道40 dB的干扰,同时在两倍频处有超过45 dB的衰减。此外,由于UHF RFID接收机可能面临的多读写器环境和大干扰信号,滤波器必须具备良好的线性度和噪声性能。 文章中采用了运算放大器-RC结构的六阶Chebyshev低通滤波器设计方案。Chebyshev滤波器虽然在通带内的平坦度不及Butterworth滤波器,但其快速的滚降特性有助于实现所需的选择性。滤波器由多个二阶Chebyshev低通滤波节组成,每个二阶滤波节(Biquad)具有特定的传递函数,以实现所需的频率响应。 运算放大器是滤波器设计的关键组件,需要具有至少70 dB的开环增益、大于65 MHz的增益带宽积、65到70 dB的相位裕度以及大于12 V/μs的上升时间。针对输入端的差分信号处理问题,文章提出使用全平衡差动放大器(FBDDA)来构建全差分缓冲器,这解决了单端输入运算放大器的局限性。FBDDA由两级结构组成,包括差分对和共源级,使用PMOS和NMOS管以优化噪声系数和增益。通过调整MOS管的跨导和输出电阻,可以进一步提升运放的性能,并降低噪声。 设计过程中,运算放大器的第一级添加了共模反馈电路,以确保在所有工艺角下都能保持稳定的性能。全差分缓冲器的输出通过负反馈与FBDDA相结合,以实现理想的输入输出关系。通过这样的设计,滤波器能够在满足信道选择性和抑制干扰的同时,确保了良好的线性度和噪声性能。 该设计旨在为UHF RFID阅读器创建一个高效、可靠的信道选择滤波器,以适应复杂无线环境下的高速通信需求。通过六阶Chebyshev滤波器和定制的运算放大器,实现了高性能的信道选择和干扰抑制,确保了RFID系统的稳定性和效率。
2025-05-27 23:02:13
123KB
RF|微波
1
遥感+
微波
遥感+
微波
遥感导论+经典教材
微波
遥感技术是一项通过
微波
波段对地球表面和大气进行观测的远距离感知技术,它能够在各种气候条件下提供关于地球表面特征和大气状况的信息。Iain H. Woodhouse所著的《
微波
遥感导论》系统地介绍了
微波
遥感技术的原理及应用,是该领域的经典教材之一。 该书的作者Iain H. Woodhouse在遥感领域有着深厚的背景和丰富的经验。他在苏格兰爱丁堡大学获得物理和自然哲学的理学学士学位,并在邓迪大学获得了遥感的理学硕士学位。此后,在马可尼研究中心从事雷达系统设计工作,并在爱丁堡取得大气遥感哲学博士学位。1995年至1998年间,在荷兰瓦赫宁根农业大学从事教育和科研工作。从1999年起,他在爱丁堡大学地球科学学院担任讲师,并于2013年起担任应用地球观测专业教授,主要研究领域为植被的主动
微波
遥感,尤其是森林遥感。 《
微波
遥感导论》一书涵盖了
微波
遥感的多个方面,包括
微波
遥感技术的发展历程、
微波
的特性和
微波
遥感的特点、
微波
与物质的相互作用、大气与地球表面的被动
微波
辐射测量、雷达高度计和
微波
散射计的探测原理、高分辨率成像雷达的原理以及干涉测量技术在主动和被动
微波
遥感中的应用等。书中详细介绍了
微波
遥感技术的应用,如地面和海洋表面的特征探测,同时对使用的数学公式进行了详细推导。 本书旨在为读者提供关于
微波
遥感的基础理论知识,适用于电子技术、大气遥感、海洋遥感以及地球科学与全球变化等专业方向的研究生和高年级本科生。此外,它也可以为从事电子系统技术,特别是
微波
遥感技术与应用研究的科研人员提供重要的参考。书中强调了基本原理,力求去除繁文缛节,专注于介绍不随时间变化的核心概念,并且避免过多关注即将过时的特定卫星或传感器,从而保持了长期的实用价值。 值得注意的是,本书的中文简体翻译版权由科学出版社独家出版,并仅在中国大陆地区销售。在本书的中文版序言中,作者强调了为初学者提供引导性文字的初衷,并希望读者能够发现该书内容的实用性和时间的考验。
微波
遥感的核心优势在于其独特的电磁波特性,如能穿透云雾、植被和一定程度的土壤,以及在夜间也具有良好的探测能力。这使得
微波
遥感能够为地球科学及环境监测提供独特且宝贵的数据。目前,
微波
遥感技术已被广泛应用于多种应用领域,例如农业、林业、气象预报、海洋监测、环境保护等。 在应用方面,高分辨率成像雷达技术,尤其是合成孔径雷达(SAR)技术,为遥感领域带来了革命性的进步。它能够在不受天气和光照条件限制的情况下获取地表的详细图像。干涉测量技术则能够利用获取的两幅或以上图像来计算地表的形变,应用于地表灾害监测、城市变迁分析等方面。这些技术在科学研究和日常决策中的应用越来越广泛,对提高我们对地球系统的理解以及资源管理、环境保护等方面有着重要意义。 《
微波
遥感导论》通过深入浅出的方式,将复杂的
微波
遥感技术原理讲解得清晰明了,适合于具有初步遥感知识的读者,尤其是对于那些希望进一步深入学习雷达遥感技术的学生和研究人员来说,是一本极具价值的参考书籍。
2025-05-15 20:32:58
101.22MB
微波遥感
1
COMSOL数值模拟咨询:变压器磁通密度、力磁耦合位移、
微波
加热电场分布、瓦斯抽采孔隙率及甲烷含量、IGBT温度与应力案例模型
内容概要:本文详细介绍了使用COMSOL进行多种复杂物理场数值仿真的经验和技巧,涵盖变压器磁通密度、力磁耦合位移、
微波
加热电场分布、瓦斯抽采孔隙率与甲烷含量以及IGBT温度及应力等多个领域的具体案例。作者通过实例展示了如何处理材料非线性、多物理场耦合、网格优化等问题,并提供了具体的代码片段和注意事项。 适合人群:从事数值模拟、多物理场耦合仿真及相关领域的科研人员和技术工程师。 使用场景及目标:帮助读者掌握COMSOL在不同应用场景下的建模方法和技巧,解决常见问题并提升仿真准确性。适用于希望深入了解COMSOL多物理场耦合仿真的专业人士。 其他说明:文中不仅提供了详细的代码示例,还分享了许多实用的经验教训,如材料属性设置、边界条件选择、网格划分等,有助于读者快速上手并避免常见的陷阱。
2025-05-10 17:43:47
1.42MB
1
论文研究 - CMB各向异性模式如何成为引力熵的映射
介绍了形式形式的引力熵的平面宇宙论(FSC)计算的原理。 这些计算表明与COBE DMR测量值紧密相关,后者显示了18微开尔文的CMB RMS温度变化。 0.66×10-5的COBE dT / T各向异性比率落在为重组/解耦历元的开始和结束条件计算的FSC重力熵范围内。 因此,将重力作为熵的新兴属性的FSC模型表明,CMB温度各向异性模式可能只是重力熵的映射,而不是在有限的时间开始时放大的“量子涨落”事件。
2025-05-05 19:56:41
322KB
平面宇宙学
宇宙微波背景
CMB各向异性
宇宙学理论
1
个人信息
点我去登录
购买积分
下载历史
恢复订单
热门下载
python爬虫数据可视化分析大作业.zip
elsevier 爱思唯尔 系列期刊的word模板,template,单栏,双栏
avantage 软件 xps 处理软件30天后不能使用问题
华为结构与材料工程师-知识点总结【by詹姆斯申易登】.pdf
麻雀搜索算法(SSA)优化bp网络
python大作业--爬虫(完美应付大作业).zip
云视通端口扫描器.rar
YOLOv5 人脸口罩图片数据集
vivado 破解 lisence(有效期到2037年) 下载
离散时间信号处理第三版课后习题答案
基于傅里叶算子的手势识别的完整源代码(Python实现,包含样本库)
超大规模集成电路先进光刻理论与应用.pdf
ios无人直播 虚拟视频实用版 可以导入视频
中国地面气候资料日值数据集(V3.0)-201001201912.rar
mingw-w64-install.exe
最新下载
initscripts.zip
Microsoft Remote Desktop Beta
软件需求第2版-刘伟琴、刘洪.pdf
怡趣X2投影仪固件 RK3128芯片方案
H3C_ER3100V201R015升级文件
code visual to flowchart 5.3 及注册机
匠人手记:一个单片机工作者的实践与思考(程序匠人)
医院管理系统(包括数据库)
安卓手机数据恢复系统(7-DataAndroidRecovery)V4.0官方安装版
实验动物管理系统之小鼠管家.rar
其他资源
QXDM_3.9.19 绿色免安装破解版
差错控制编码(原书第2版)_[林舒.著][中文].part3
改进的物元可拓代码,有数据可以直接跑
基于stm32单片机的水质监测
MATLAB实现曼切斯特编码,密勒编码,CMI编码 以及译码
STM32F103C8T6核心板测试程序(RTC).rar
随机微分方程:模型和数值Stochastic Differential Equations: Models and Numerics
snmp agent 以及 server模拟
百度知识图谱新进展(64页ppt,百度知心系统架构介绍)
酷欧天气(2018最新版)
驱动程序ftdi_ft232_drive.exe
【免费2018】C#多线程编程实战_中文完整版(带书签目录)【PDF高清】.rar
精确对角化-源码
tensorflow-1.3.0rc2-cp36-cp36m-win_amd64.whl
词法分析器源代码(c/c++)
GPU-Accelerated Vision for Robots with OpenCV and CUDA.pdf
OCP 062刚通过考试
AnkhSvn-2.1.7444.278.msi & AnkhSvn-2.1.8420.8.msi
sha1实现源码
TCS3200-TEST.rar
LSI-SAS-RAID卡命令行操作手册
MinGW64位版
java web mysql 网上商城完整源码 +sql 脚本
编程素材 系统常用动画 GIF及AVI格式)