用TTL或CMOS集成电路设计智力竞赛抢答器逻辑控制电路,具体要求如下: ①抢答组数为4组,输入抢答信号的控制电路应由无抖动开关来实现。 ②判别选组电路。能迅速、准确地判出抢答者,同时能排除其它组的干扰信号,闭锁其它各路输入使其它组再按开关时失去作用,并能对抢中者有光、声显示和鸣叫指示。 ③计数、显示电路。每组有三位十进制计分显示电路,能进行加/减计分。 ④定时及音响。 必答时,启动定时灯亮,以示开始,当时间到要发出单音调“嘟”声,并熄灭指示灯。
2025-12-19 11:24:19 28.23MB 数字电路
1
光电传感器是一种能够将可见光信号转换为电信号的器件,也可称为光电器件,主要用于光控开关,光控照明,光控报警领域中,对各种可见光进行控制。      光电传感器的线路连接图   从上图可看出该光电传感器采用的是光敏电阻器作为光电元件,光敏电阻器是一种对光敏感的元件,其电阻值随入射光线的强弱发生变化而变化。   当环境光较强时,光电传感器RG的阻值较小,使可调电阻器RP与光电传感器RG处的分压值变低,不能达到双向触发二极管VD的触发电压值,双向触发二极管VD 截止,进而使双向了晶闸管VS也截止,照明灯EL熄灭。   当环境光较弱时,光电传 在现代传感技术中,光电传感器是一种将光信号转换为电信号的器件,广泛应用于自动化控制领域,特别是在光控开关、照明以及报警系统中。光敏电阻器是光电传感器中重要的组成部分,其能够将光强变化转换为电阻值变化,进而影响电路的分压,实现对环境光照强度的检测与响应。 光电传感器的控制电路通常利用光敏电阻的电阻值随光强变化的特性来设计。在光照强度变化时,光敏电阻的阻值会发生相应变化,从而改变电路中分压的大小。这种改变最终影响到整个电路的工作状态,控制负载(如照明灯)的开关。具体来说,当环境光线较强时,光敏电阻的阻值会减小,与之串联的可调电阻器RP和光敏电阻器RG形成较低的分压值,该分压值若低于双向触发二极管VD的触发电压,VD将保持截止状态,导致双向晶闸管VS也截止,使得负载断开,照明灯熄灭。 反之,在环境光线较暗时,光敏电阻的阻值增大,与可调电阻器RP形成较高的分压值。随着光线强度的进一步减弱,该分压值会增加到足以触发双向触发二极管VD的程度,VD导通后,会触发双向晶闸管VS导通,闭合电路,使照明灯EL点亮。通过这种方式,光电传感器实现了对环境光照的实时监控,并根据光照强度的高低自动控制照明设备的开关。 值得注意的是,通过调整可调电阻器RP的阻值,我们可以设置特定的光照强度阈值,以满足不同环境的应用需求。例如,在住宅照明中,可能需要在傍晚时分自动开启灯光;而在工作场所,则可能需要在光线低于特定阈值时自动打开照明设备。这种灵活性使得光电传感器控制电路能够被广泛应用于多种场合。 除了在照明控制上的应用,光电传感器还在多个领域发挥着重要作用。例如,在工业自动化领域,光电传感器可以用于监测生产线上物体的存在与否,实现自动化检测;在安全领域,光电传感器能够作为入侵检测系统的一部分,及时响应非法入侵;在医疗设备中,利用光电传感器监测特定部位的光强,可以用于监测生理指标等。通过光电传感器,这些系统能够实时、准确地获取所需的光信号信息,从而提高自动化和智能化水平。 光电传感器及其控制电路的设计和应用,是现代传感技术进步的一个缩影。随着光电技术、微电子技术的发展,光电传感器正变得越来越小型化、智能化,其应用范围也在不断扩大。设计人员通过深入研究光电传感器的工作原理和电路特性,可以更好地将光电传感器集成到各类复杂的自动控制系统中,实现更加精确和高效的控制。同时,新的光电材料和新型传感器的研究开发,也在不断拓展光电传感器的应用边界,使其在智能家居、智慧城市、物联网等新兴领域中展现出更加广阔的应用前景。 光电传感器作为传感技术中的关键元件,其控制电路的设计理念和技术分析,不仅揭示了光电传感器的工作机理,还展示了其在不同领域中的广泛应用潜能。深入理解并掌握光电传感器的控制电路,对于提高自动化和智能化系统性能具有重要意义。随着技术的不断进步和创新,光电传感器及其控制电路必将在未来的科技发展中扮演更加重要的角色。
2025-11-27 18:36:45 53KB 传感技术
1
在本文中,我们将深入探讨如何设计一个采用STM32F103和TMS320F2808双核控制器的逆变电源控制电路。这个系统利用了两个微控制器的优势,实现了高效的电源转换和复杂的控制算法。 STM32F103是意法半导体(STMicroelectronics)生产的一款基于ARM Cortex-M3内核的微控制器,它以其高处理能力、丰富的外设接口和低功耗而受到广泛欢迎。STM32F103集成了多种功能,如ADC(模拟数字转换器)、PWM(脉宽调制)和SPI/I2C/USART通信接口,使其成为工业应用的理想选择,特别是对于实时数据处理和控制任务。 TMS320F2808则是德州仪器(Texas Instruments)的高性能浮点DSP(数字信号处理器),专门用于实时信号处理和控制。它拥有强大的浮点运算单元,高速的数据吞吐能力和灵活的外设配置,适用于电力电子、电机控制和自动化等领域。TMS320F2808的快速响应和精确计算能力使其成为逆变电源控制的关键组件。 在双核控制逆变电源系统中,STM32F103可能负责较低层次的实时控制任务,如采集传感器数据、执行PWM调制和与外部设备通信。而TMS320F2808则承担更高层次的算法计算,如空间电压矢量调制(SVM)、PID控制以及故障检测和保护策略。这种分工合作可以充分利用两个处理器的特性,实现高效且稳定的电源控制。 逆变电源控制电路的设计涉及多个环节。需要进行电路拓扑选择,常见的有半桥、全桥和三相逆变结构。然后,根据电源需求和效率要求,设计合适的滤波电路,以减少谐波并提供平滑的交流输出。接着,确定PWM调制策略,这将直接影响到逆变器的效率和动态性能。SVM是一种常用的技术,它能提供接近正弦波的输出,同时减小开关损耗。 在硬件设计中,需要考虑微控制器的电源管理、时钟系统、中断处理、保护电路以及与外围器件的接口。软件方面,开发实时操作系统(RTOS)或者固件库是必要的,它们可以帮助协调双核间的通信和任务调度。同时,编写控制算法的代码,包括PID参数整定、故障诊断和系统响应优化等。 此外,系统的稳定性、安全性和可靠性也是设计的重点。通过热设计确保器件工作在合适的温度范围内,设置过流、过压和短路保护,以及采用冗余设计来增强系统的健壮性。 STM32F103和TMS320F2808双核控制逆变电源控制电路的设计是一项综合性的工程任务,需要结合硬件、软件和控制理论多方面的知识。通过巧妙地组合这两个微控制器的特性,可以构建出高效、可靠的逆变电源系统,满足各种工业和家用应用的需求。
2025-11-07 16:02:01 491KB stm32f103 TMS320F2808
1
simulink与modelsim联合仿真buck闭环设计 主电路用simulink搭建,控制电路完全有verilog语言实现(包括DPWM,PI补偿器) 适用于验证基于fpga的电力电子变换器控制,由于控制回路完全由verilog语言编写,因此仿真验证通过,可直接下载进fpga板子,极大缩短了开发数字电源的研发周期。 buck变换器指标如下: (*额定输入电压*) Vin->20, (*最大输入电压*) Vin_max->25, (*最小输入电压*) Vin_min->15, (*输出电压*)Vo>10, (*开关频率*)fs->50*10^3, (*输出功率*)Po->100, (*最小占空比*)Dmin->0.1, (*额定占空比*)D ->0.5, (*最大占空比*) Dmax->0.6, (*额定输出电流*) Io-> 10 包括:buck主电路以及控制回路设计文档,仿真文件。 以及simulink与modelsim的联合仿真调试说明文档。
2025-10-13 20:55:48 290KB 编程语言
1
1 引言   在半导体电阻式气体传感器中,气敏芯体对温度非常敏感,在整个工作环境温度波动范围内温度噪声通常会完全掩盖气体浓度输出的有效信号。另外气体传感器大多利用化学反应性质测量气体浓度,化学性质通常与温度有关,为了获得响应特性,敏感芯体通常需要工作在特定温度,因而为气敏芯体提供恒定的工作温度环境显得非常有意义。   在电路设计理论里实现恒温控制的方式有很多,传感器的特殊应用决定了低功耗、高精度、高可靠性的分立模拟电路实现方案非常适合。PID脉宽控制恒温模拟电路具有非常好的控温精度,同时元器件简单且具有可靠的失效率参数,风险可控,非常适合航天产品的设计要求。   2 电路框图   传感
2025-09-29 13:57:10 570KB
1
NTC温控控制电路是一种利用NTC热敏电阻(Negative Temperature Coefficient)进行温度监测与控制的电子系统。NTC热敏电阻的阻值会随着温度的升高而降低,这一特性使得它成为温度传感器的理想选择。在本压缩包中,包含的电路图和程序将为我们揭示如何设计和实现一个基于NTC的温度控制系统。 电路设计方面,NTC温控控制电路通常包括以下几个关键部分: 1. **NTC热敏电阻**:作为核心温度传感器,NTC热敏电阻会连接到电路中,用于测量环境或目标物体的温度。其阻值变化会直接影响电路的电流或电压,从而提供温度信息。 2. **放大器**:由于NTC热敏电阻的阻值变化可能非常微小,因此通常需要一个运算放大器或其他类型的放大电路来增强信号,使其足够被后续电路处理。 3. **模数转换器(ADC)**:放大后的模拟信号需要转换为数字信号,以便微控制器能够理解和处理。ADC是这个过程的关键组件。 4. **微控制器(MCU)**:MCU是整个系统的"大脑",它接收来自ADC的数字信号,解析温度信息,并根据预设的控制策略执行相应的操作。 5. **控制输出**:根据MCU的指令,电路可能包括继电器、固态继电器或其他电子开关,它们控制加热或冷却元件的电源,以维持目标温度。 在程序代码部分,我们可以预期看到以下功能的实现: 1. **温度采集**:程序会有一个循环,定期读取ADC的值,从而获取NTC的温度数据。 2. **温度转换**:读取的ADC值需要通过校准公式转换成实际温度,这通常涉及到线性化处理,因为NTC的阻值与温度的关系通常是非线性的。 3. **比较与控制决策**:程序会比较当前温度与设定点,如果超出允许范围,就会触发控制逻辑。 4. **控制输出驱动**:根据比较结果,MCU会决定是否打开或关闭加热/冷却设备,或者调整其工作状态。 5. **故障检测与保护**:为了确保系统的安全运行,程序可能还包括故障检测和保护机制,如过热保护、短路保护等。 参考资料可能涵盖NTC热敏电阻的选型指南、ADC的使用手册、微控制器的编程教程以及温度控制算法的理论介绍。这些资料对于理解并优化系统性能至关重要。 NTC温控控制电路的设计涉及硬件和软件的紧密结合,通过精确控制温度,广泛应用于家用电器、工业自动化、医疗设备等领域。通过对电路图和程序的深入学习,我们可以掌握构建类似系统的基本技术和方法。
2025-09-24 11:57:27 1.83MB 电路 程序代码
1
数电课程设计交通灯控制电路,主车道通行45秒支路通行25秒,绿灯转换红灯中间黄灯闪5秒。
2025-08-27 16:10:41 55KB 课程设计
1
LPC845电容式触摸控制板能够与广泛的开发工具结合使用,包括MCUXpresso IDE、IAR EWARM和Keil MDK。电路板由LPC84x Code Bundle软件包中所含的软件实例和FreeMASTER插件提供支持,可帮助调整电容式触摸性能。整套LPC845触摸控制系统硬件部分包括带有板载CMSIS-DAP硬件调试器的LPC845主处理器板以及两个采样电容式触摸附加板,其中包含滑块、旋转轮和按钮矩阵用户界面设计。 定制附加板可以通过标准连接器与主处理器板一起使用。板载硬件调试器与MCUXpresso IDE及Keil和IAR等其他领先的工具链兼容。该电路板还配有一个标准的10引脚接头,可使用第三方硬件调试器。 实物展示: LPC845电容式触摸套件板包括以下功能: 兼容MCUXpresso IDE和其他主流工具链(包括IAR和Keil) 板载CMSIS-DAP (硬件调试器)带VCOM端口,基于LPC11U35 MCU LPC845主处理器(MP)板,与LPCXpresso845MAX板兼容(用于常见功能),便于代码移植/共享 旋转轮和滑块(RWS)传感器电路板 9个按钮矩阵(BM)传感器电路板 调试器接头支持通过外部调试器对目标MCU进行调试 传感器电路板上的LED适用于每个电容式触摸板 目标ISP和用户/唤醒按钮 目标复位按钮 通过扬声器驱动器和扬声器的DAC输出 附件资料截图:
2025-08-13 10:04:23 14.39MB 电容式触摸 触摸控制 电路方案
1
该时间温度控制系统采用常用的STC89C52单片机作为主控制心,外围硬件电路包括:4*4的矩阵键盘电路、L7805CP电源电路、LCD12864液晶显示电路、DS18B20及DS1302用于实现温度和时间控制电路。该硬件电路虽然设计简单,但是应用广泛。 主要功能:万年历、闹铃、密码锁、篮球器、计算器、温度计、温度控制、键盘锁、系统设置等(我觉得这个设计的界面非常的漂亮,因为有不同模式)。 实物图片展示: 附件内容包括时间温度控制系统原理图PDF档,以及源码,源码有详细的中文注释。 如截图:
2025-06-25 19:05:24 12.32MB 温度控制电路 电路方案
1
《16路彩灯循环控制电路课程设计》是数字电路课程中的一项重要实践项目,主要目的是锻炼学生在实际操作和数字系统设计方面的技能。该设计任务是构建一个能够实现16路彩灯依次点亮并循环的电路,并且可以通过多种方式调节彩灯的闪烁模式和间隔时间,从而呈现出多样化的视觉效果。 设计的关键在于运用数字逻辑元件,例如移位寄存器和计数器,来控制彩灯的亮灭顺序与模式。移位寄存器能够存储和传递数据,通过改变其内部数据的排列顺序,就能实现彩灯的循环点亮效果。而计数器则用于控制彩灯点亮的频率和模式,通过设定不同的计数规则,可以创造出多种不同的闪烁效果。 该设计的主要技术指标包括:一是必须能够驱动16个LED灯进行循环点亮;二是允许用户调节彩灯循环的间隔时间,以实现不同速度的闪烁效果;三是提供输入开关来设定彩灯的闪烁规律,至少提供三种以上的闪烁模式;四是设计中应包含复位控制功能,当按下复位按钮时彩灯开始循环,松开按钮时彩灯关闭。 在设计过程中,学生需要按照以下步骤进行:首先是分析设计需求,确定电路的整体结构,并计算相关元件的参数;其次是列出所有需要的元器件清单,并进行采购;然后是安装和调试设计好的电路,确保其能够满足设计要求;最后是记录实验过程中的结果,并撰写详细的设计报告。 此外,学生还需要掌握555定时器构成的多谐振荡器的工作原理,了解译码器和中规模集成计数器的功能,以及如何利用这些元件来设计彩灯控制电路,从而实现不同的闪烁效果。在实验提示方面,需要注意的是,16路彩灯可以用16个发光二极管来模拟,而每个LED都需要配备合适的限流电阻,以防止因电流过大而损坏。如果需要自行布线,这一点必须加以考虑。同时,可以通过实验箱上的开关来设定闪烁时间,这就需要巧妙地将开关与计数器或定时器连接起来,以实现时间的调节功能。 通过完成这个课程设计,学生不仅能够深入理解数字电路的工作原理,还能提升自身的实际操作能力和解
2025-06-01 11:56:35 56KB 课程设计 彩灯电路
1