【算法与复杂性】在计算机科学中,算法是解决问题的核心工具,而复杂性则是衡量算法效率的重要标准。墨尔本大学的COMP90038课程深入探讨了这两个主题,旨在帮助学生掌握高级的算法设计和分析技巧。 **概念** 1. **Algorithmic Problems**:算法问题通常涉及在有限步骤内解决特定计算任务。这些问题可以是数学问题、数据处理任务或其他形式的决策问题。学习如何将现实世界的问题转化为可执行的算法是这个课程的基础。 2. **Algorithm**:一个算法是一系列明确的步骤,用于解决特定问题或完成特定任务。它必须是确定性的,有限的,并且能在有限的时间内终止。理解算法的基本结构和设计原则是这门课程的重点。 3. **时间复杂度**:时间复杂度是评估算法运行时间随着输入规模增加而增长的速度。它提供了算法效率的理论上限,常用的表示方法有大O记号。 4. **增长次数表**:用于比较不同算法的增长速率,例如线性(O(n))、对数(O(log n))、平方(O(n²))和指数(O(2^n))等。理解这些增长模式对于选择最佳算法至关重要。 5. **渐进符号**:包括大O、Ω和Θ记号,它们分别表示算法运行时间的上限、下限和精确界限,帮助我们理解和描述算法的最坏、最好和平均性能。 **小总结** - **基本操作与输入规模度量**:分析算法时,关注基本操作的数量(如比较、赋值)以及输入规模(如问题实例的大小n)对算法运行时间的影响。 **Master Theorem** 6. **Master Theorem** 是一种解决递归关系T(n) = aT(n/b) + f(n)的工具,其中a和b为常数,f(n)是关于n的函数。这个定理为解决分治算法的时间复杂度提供了一种直接的方法。 7. **Euclid’s Algorithm**:欧几里得算法是求解最大公约数(GCD)的经典算法,基于“较大的数除以较小的数,再用除数去除余数”的递归过程。其时间复杂度可以用Master Theorem来分析。 **递归(Recursion)** 8. **Recursion** 是算法设计的一种强大工具,通过函数调用自身来解决问题。理解递归的原理,包括基线条件(base case)和递归情况(recursive case),以及如何避免无限循环,是学习算法的重要部分。 **数据结构** 9. **数组(array)**:是最基础的数据结构,提供随机访问但插入和删除操作相对较慢。理解数组的特性对于设计和分析算法至关重要。 10. **链表(linked list)**:链表允许动态地添加和删除元素,但不支持随机访问。链表分为单链表、双链表和循环链表等类型,各有优缺点,适合不同场景。 以上只是课程的冰山一角,COMP90038还涵盖了树、图、排序算法、查找算法、动态规划、贪心算法、随机化算法等多个主题,旨在培养学生的算法思维和复杂性分析能力,以应对不断发展的信息技术挑战。通过这门课程的学习,学生能够掌握解决复杂问题的高效方法,为未来在IT领域的职业生涯打下坚实基础。
2025-06-15 19:49:36 8.98MB
1
尚硅谷 Vue2.0 + Vue3.0 入门到精通教程学习笔记 个人整理的word
2025-06-15 04:00:13 10.38MB Vue VUE2.0 VUE3.0
1
知识点: 1. Windows 10特性 - 快速流畅的用户体验 - 支持多种交互机制和不同设备的视图 - 数据共享和多应用间的交换 - 多桌面和任务视图功能 2. Windows应用程序开发 - 使用C#和XAML开发具有美观UI的应用程序 - 应用类型:桌面应用程序、Windows商店应用、通用应用程序(UAP)、通用Windows平台(UWP) - 项目类型差异及其开发环境 3. 开发环境设置 - Windows 8 + Visual Studio 2012 - Windows 10 + Visual Studio 2015/2017/2019/2022 4. 创建Windows应用程序 - 如何创建一个Windows应用程序项目 - 项目结构和各文件作用(App.xaml, MainPage.xaml等) 5. 开发、测试和调试 - 安装Visual Studio进行开发 - 测试和调试确保功能正常 - 应用程序部署(本地机器/Windows商店) 6. App.xaml和App.xaml.cs - App.xaml:声明应用资源位置 - App.xaml.cs:代码隐藏文件,包含调用InitializeComponent方法的构造函数,初始化XAML元素 - 应用入口点及处理激活和挂起的方法 7. MainPage.xaml和MainPage.xaml.cs - MainPage.xaml:定义UI,使用XAML标记或IDE工具箱控件 - MainPage.xaml.cs:代码隐藏页面,添加应用逻辑和事件处理程序 8. Package.appxmanifest - 应用清单文件,包含名称、描述、磁贴、起始页等 - 列出应用依赖项、资源、文件列表 9. 添加UI元素 - 设计时和运行时添加UI元素的方法 - 运行时通过C#代码添加控件及属性设置示例 10. Control类和常用子类 - UI元素基类,ControlTemplate定义外观 - 常用子类:ContentControl、UserControl、ItemsControl等 - 常用属性:字体样式、大小、背景、前景、边框、启用状态、内容对齐、内边距、模板等 11. 文本控件 - 常用文本控件:TextBlock、RichTextBlock、TextBox、RichEditBox、PasswordBox - TextBlock属性:显示文本、字体大小、字体、前景色、换行模式、对齐方式、内边距、外边距、字体样式、背景色等
2025-06-14 10:54:42 1.35MB
1
自留笔记
2025-06-14 01:14:14 29.83MB
1
Jetpack Compose是Android开发中的一个关键组件,它是Google推出的一种用于构建用户界面的新方式,旨在简化Android UI的开发过程。Compose使用声明式编程模型,允许开发者以更直观的方式描述UI,而不是通过传统的布局和事件处理。这使得代码更加简洁、可读性强,并且能够实时预览效果。 在上述代码中,我们看到`MainActivity`类是应用的入口点,它继承自`ComponentActivity`。`onCreate`方法中调用了`setContent`函数,这是启动Compose UI的核心。在这个函数内,我们可以定义我们的`@Composable`函数,例如`MessageCard`,来创建UI元素。`@Composable`注解表示这个函数会生成UI的一部分。 `MessageCard`函数接受一个字符串参数`name`或一个`Message`对象,然后使用`Text`组件显示文本。`@Preview`注解用于在预览模式下展示`MessageCard`的外观,无需运行整个应用程序。 在第二个`MainActivity02`示例中,我们看到了如何使用`Column`和`Row`组件来布局UI元素。`Column`垂直堆叠其子组件,而`Row`水平排列它们。`Box`组件则类似于Android的`FrameLayout`,可以用来堆叠多个组件。在这里,我们定义了一个名为`Message`的数据类,包含作者和正文两个属性。 接着,我们改进了`MessageCard`,将`author`和`body`信息放在一个`Row`中,`Row`左侧是一个图像(通过`Image`组件),右侧是一个包含作者和正文的`Column`。`painterResource(id = R.drawable.profile_picture)`用于加载资源图片,`contentDescription`设置为null是因为这里图片用于装饰,不需要辅助功能描述。 提到的MD深色主题是Material Design的深色模式。Jetpack Compose支持Material Design,可以通过配置主题轻松实现深色和浅色模式。在Compose中,可以自定义`MaterialTheme`并指定颜色方案。例如,要启用深色主题,可以在`setContent`之前设置`MaterialTheme`: ```kotlin setContent { MaterialTheme(colors = ThemeData.dark()) { // 你的Composables here } } ``` 这将确保所有的Material组件如`Text`, `Button`等都使用深色主题的颜色。通过这种方式,开发者可以轻松地为应用提供一致且符合Material Design规范的用户体验。
2025-06-13 15:52:16 28.05MB jetpack android
1
山东大学软件学院Web数据管理复习笔记(手记)
2025-06-12 14:36:02 179.57MB 复习笔记
1
2023-04-06-项目笔记-第四百七十八阶段-课前小分享_小分享1.坚持提交gitee 小分享2.作业中提交代码 小分享3.写代码注意代码风格 4.3.1变量的使用 4.4变量的作用域与生命周期 4.4.1局部变量的作用域 4.4.2全局变量的作用域 4.4.2.1全局变量的作用域_1 4.4.2.476局变量的作用域_476- 2025-04-24
2025-06-11 12:26:38 9.22MB
1
计量地理学是一门结合了地理学与统计学的学科,主要研究如何运用数学和统计方法来分析、理解和解决地理问题。在《计量地理学》(徐建华主编)这本书中,作者深入浅出地介绍了这门学科的基础理论和实践应用。这本教材广泛应用于大学地理信息系统(GIS)专业的课程教学中,帮助学生掌握处理空间数据的关键技能。 计量地理学的核心在于空间数据分析。在学习这门课程时,你需要了解基本的空间数据分析概念,如空间依赖、空间异质性以及空间自相关。空间依赖是指地理现象之间的相互关系,而空间异质性则反映了地理现象在空间分布上的不均匀性。空间自相关则是指相似特征倾向于在空间上聚集的现象,它是分析地理模式和趋势的重要工具。 在GIS中,常用的数据类型包括矢量数据和栅格数据。矢量数据以点、线、面的形式表示地物,适用于表示边界清晰、形状复杂的地理要素;而栅格数据以网格形式存储,每个格子代表一个属性值,适用于表示连续分布的地理现象,如地形高度或温度。掌握这两种数据类型及其转换方法是进行空间分析的基础。 统计学在计量地理学中的应用至关重要。例如,描述性统计用于总结和概括数据特性,而推断性统计则帮助我们从样本推断总体。此外,地统计学是计量地理学的一个分支,专门处理空间数据的不确定性,包括半变异函数、克里金插值等方法,用于评估空间结构和预测未知区域的值。 在实际问题中,我们常使用回归分析来探索地理变量间的关联性。线性回归、逻辑斯谛回归以及地理加权回归(GWR)等都是常用的方法。GWR是一种局部统计方法,能揭示地理变量间在不同空间位置的关系强度。 另外,空间聚类分析也是重要的计量地理学技术,包括点模式分析(如核密度估计、热点分析)和区域聚类(如聚类分析、空间自相关检验)。这些方法有助于识别地理现象的空间聚集模式,为政策制定和规划提供依据。 地理信息系统软件如ArcGIS、QGIS等提供了实现这些分析的平台。学习使用这些软件进行数据导入、处理、制图和分析是计量地理学实践环节的关键。 计量地理学通过数学和统计手段解析地理现象,为地理学研究和GIS应用提供了有力的工具。理解和掌握这些知识点,将使你在地理信息科学领域具备扎实的理论基础和实践能力。在期末复习时,不仅要理解概念,还要通过实例操作加深理解,从而在考试中取得优异成绩。
2025-06-11 00:28:09 3.93MB 计量地理学 GIS
1
《高通公司LTE培训笔记精华解析》 高通公司作为全球知名的通信技术开发商,其在LTE领域的技术研究和产品开发始终处于行业前沿。LTE(Long Term Evolution)是一种高速无线通信技术,旨在提升移动数据传输速率和网络效率。本文将深入探讨高通在LTE领域的关键技术和挑战,以及LTE网络的基本架构。 在终端设备方面,高通的40纳米TD-LTE单模和多模数据终端已相当成熟,然而28纳米多模多频终端的开发则面临更多挑战。尽管28纳米工艺带来了更高的集成度和更低的能耗,但其大规模商用仍需时间。目前,高通已推出小批量的28纳米产品,不过量产过程中面临的主要问题在于完善28纳米芯片的制造工艺以及构建复杂的产品架构。 LTE网络主要由E-UTRAN(Evolved UMTS Terrestrial Radio Access Network)和EPC(Evolved Packet Core)组成,合称为EPS(Evolved Packet System)。E-UTRAN是LTE的接入网络,负责无线通信;EPC则是核心网络,承担数据包处理和网络管理。 在EPC中,MME(Mobility Management Entity)是控制面的关键网元,负责移动性管理;S-GW( Serving Gateway)作为用户面接入服务网关,相当于传统Gn SGSN的用户面功能;P-GW(Packet Data Network Gateway)作为边界网关,执行承载控制、计费、地址分配和非3GPP接入等功能,类似GGSN。 在协议栈层面,LTE分为用户面和控制面。用户面协议栈主要负责数据传输,包括头压缩、加密、调度和错误校验(ARQ或HARQ)。控制面协议栈则涉及系统信令传输,包括RLC和MAC层功能、PDCP层的加密和完整性保护、RRC层的广播、寻呼、连接管理、资源控制、移动性和测量报告控制,以及NAS层的承载管理、鉴权和安全控制。 在物理层,LTE帧结构是一个10毫秒的无线帧,由两个5毫秒的半帧组成,每个半帧包含5个1毫秒的子帧。TDD(Time Division Duplexing)模式下,帧结构包括常规和特殊子帧,特殊子帧用于上下行数据的转换。物理层的最小资源单元是RE(Resource Element),而RB(Resource Block)是数据传输的最小频域单位,通常由12个连续子载波组成。 下行物理信道如PDCCH(Physical Downlink Control Channel)用于指示PDSCH(Physical Downlink Shared Channel)的相关信息,包括传输格式、资源分配和HARQ信息。PDSCH则承载数据,PBCH(Physical Broadcast Channel)传递系统信息,PCFICH指示PDCCH的符号数,PHICH用于反馈ACK/NACK,PMCH用于多播数据传输。下行物理信号包括同步信号和参考信号,前者用于识别小区ID,后者用于信道质量测量和解调。 上行物理信道包括PUSCH(Physical Uplink Shared Channel)和PUCCH(Physical Uplink Control Channel)。PUSCH用于发送数据,PUCCH则承载控制信息如ACK/NACK、CQI、调度请求和RI信息。PRACH(Physical Random Access Channel)用于随机接入。上行物理信号的参考信号分为解调用和探测用,分别服务于eNodeB端的相干检测和解调以及上行信道质量测量。 OFDM技术是LTE的基础,通过将信道划分为多个正交子信道,实现了高速数据传输,有效解决了多径衰落问题。通过这种方式,LTE能够提供更高的数据速率和更稳定的通信性能,满足现代移动通信的需求。 高通公司的LTE培训笔记涵盖了从终端技术到网络架构,再到协议栈和物理层的全面知识,揭示了LTE技术的复杂性和先进性。随着技术的不断进步,高通将继续引领LTE及其后续技术的发展,为全球用户提供更高效、更可靠的无线通信服务。
2025-06-09 11:18:40 618KB LTE培训
1
时空联合规划是在自动驾驶领域中一种综合考虑空间和时间因素的路径规划方法。它旨在解决在约束动态环境中,如何更有效地预测与规划车辆运动轨迹的问题。这种方法尤其适用于复杂多变的道路条件,例如在狭窄道路交汇或超车时,能够提供合理的行驶轨迹。 传统的路径规划方法在考虑车辆运动时,往往将空间和时间因素分开处理,这样会造成在规划过程中丢失一些关键信息,从而影响最终轨迹的优劣。时空联合规划通过将空间和时间联合起来,在三维空间内直接计算最佳轨迹,因此可以提供更加准确和高效的解决方案。 时空联合规划的实现通常包括以下几个步骤:在x-y平面求解最佳行车路线;接着,根据路径计算行车速度的曲面;计算曲面上的最佳速度,获得最终的轨迹。这种方法可以充分考虑动态障碍物信息,使得路径规划更加合理。 在方法论上,时空联合规划可以基于搜索的规划方法、基于迭代计算的规划方法和基于时空走廊的规划方法等实现。例如,基于Hybrid A*的时空联合规划是一种有效的路径规划技术。Hybrid A*算法结合了启发式搜索和动态规划的特点,可以有效处理复杂场景下的轨迹规划问题。它利用离散化前轮转角集合和加速度集合来更新车辆状态,同时定义时空节点的启发式函数和成本函数来优化搜索过程,从而加快路径规划的搜索速度,降低算力要求。 构建三维时空联合规划地图是时空联合规划中的关键步骤,它基于二维栅格地图沿时间轴扩展生成三维时空地图。三维时空地图不仅包含车辆的位置和运动学信息,还能展示车辆的状态更新过程,包括横向和纵向速度以及偏航角。这样的地图可以为车辆提供更加丰富的环境信息,使得路径规划更加精确。 在应用案例展示中,时空联合规划能够有效解决窄道会车问题。窄道会车对于自动驾驶车辆来说是一个挑战,因为需要在有限的空间内合理地规划车辆的行进路线和速度。时空联合规划可以提供一种在三维空间内直接计算最佳轨迹的方法,从而有效避免会车时的潜在碰撞风险,保证行车安全。 时空联合规划在自动驾驶中的应用具有诸多优势。它能够更合理地考虑动态障碍物的影响,避免传统算法容易陷入的轨迹次优问题。同时,这种方法符合人类驾驶习惯,通过直接学习人类司机的行为模式,可以使得自动驾驶系统更加容易被用户接受和信任。在未来,随着技术的不断进步和算法的进一步优化,时空联合规划将在自动驾驶领域发挥越来越重要的作用。 时空联合规划作为自动驾驶预测与决策规划的重要组成部分,通过将空间和时间因素结合起来,为自动驾驶车辆在复杂环境中的安全、高效运行提供了新的解决思路和方法。随着相关技术的不断成熟和应用范围的扩展,时空联合规划将有助于推动自动驾驶技术的发展,并最终实现安全可靠的自动驾驶系统。
2025-06-06 16:38:28 3.91MB 自动驾驶 预测与决策
1