内容概要:本文介绍了一个基于循环神经网络(RNN)的唐诗生成实验,旨在通过构建和训练RNN模型实现端到端的唐诗自动生成。实验涵盖了数据预处理、词典构建、文本序列数字化、模型搭建(可选SimpleRNN、LSTM或GRU)、训练过程监控以及生成结果的测试与评估。重点在于理解RNN在序列建模中的应用,掌握语言模型的基本原理,并通过实际生成的诗句分析模型的语言生成能力与局限性。; 适合人群:具备一定深度学习基础,正在学习自然语言处理或序列建模相关课程的学生,尤其是高校计算机或人工智能专业本科生。; 使用场景及目标:①深入理解RNN及其变体(LSTM、GRU)在文本生成任务中的工作机制;②掌握从数据预处理到模型训练、生成与评估的完整流程;③提升对语言模型评价指标与生成质量分析的能力; 阅读建议:建议结合代码实践本实验内容,在训练过程中关注损失变化与生成效果,尝试调整网络结构与超参数以优化生成质量,并思考如何改进模型以增强诗意连贯性和文化契合度。
2025-12-29 00:11:04 18KB 文本生成 深度学习 LSTM
1
为了解决清洁机器人完全覆盖路径规划中最大覆盖率和最小重复率的要求,在清洁机器人犁田式全局路径规划算法的基础上,提出了BP神经网络方法作为清洁机器人的局部路径规划。运用基于深度优先遍历的改进型BP神经网络算法,解决清洁机器人的清扫死区问题。仿真的结果表明所提出的BP神经网络方法和改进型BP神经网络算法能够解决清洁机器人在家庭内的完全覆盖路径规划问题。
2025-12-23 18:00:58 482KB 自然科学 论文
1
行业词库-nlp/自然语言处理
2025-12-21 11:31:42 281KB 自然语言处理 人工智能 nlp
1
python安装恶意软件检测与分类_机器学习_深度学习_自然语言处理_计算机视觉_恶意软件特征提取_恶意软件分类_恶意软件识别_恶意软件分析_恶意软件检测_恶意软件防御_恶意软件对抗_恶意软件研究.zip 恶意软件检测与分类是信息安全领域的一项核心任务,随着网络技术的发展和恶意软件(又称恶意代码或恶意程序)的日益复杂,这一领域的研究显得尤为重要。恶意软件检测与分类的目的是为了能够及时发现恶意软件的存在,并将其按照特定的标准进行分类,以便采取相应的防御措施。 机器学习是实现恶意软件检测与分类的关键技术之一。通过机器学习算法,可以从大量已知的恶意软件样本中提取出特征,并训练出能够识别未知样本的模型。在机器学习的框架下,可以通过监督学习、无监督学习或半监督学习等方式对恶意软件进行分类。深度学习作为机器学习的分支,特别适用于处理大量的非结构化数据,如计算机视觉领域中提取图像特征,自然语言处理领域中处理日志文件等。 自然语言处理技术能够对恶意软件代码中的字符串、函数名等进行语义分析,帮助识别出恶意软件的特征。计算机视觉技术则可以在一些特殊情况下,例如通过分析恶意软件界面的截图来辅助分类。恶意软件特征提取是将恶意软件样本中的关键信息抽象出来,这些特征可能包括API调用序列、代码结构、行为模式等。特征提取的质量直接影响到恶意软件分类和检测的效果。 恶意软件分类是一个将恶意软件按照其功能、传播方式、攻击目标等特征进行划分的过程。分类的准确性对于后续的防御措施至关重要。恶意软件识别则是对未知文件或行为进行判断,确定其是否为恶意软件的过程。识别工作通常依赖于前面提到的特征提取和分类模型。 恶意软件分析是检测与分类的基础,包括静态分析和动态分析两种主要方法。静态分析不执行代码,而是直接检查程序的二进制文件或代码,尝试从中找到恶意特征。动态分析则是在运行环境中观察程序的行为,以此推断其是否具有恶意。 恶意软件检测是识别恶意软件并采取相应措施的实时过程。它涉及到对系统或网络中运行的软件进行监控,一旦发现异常行为或特征,立即进行标记和隔离。恶意软件防御是在检测的基础上,采取措施防止恶意软件造成的损害。这包括更新安全软件、打补丁、限制软件执行权限等。 恶意软件对抗则是在恶意软件检测与分类领域不断升级的攻防博弈中,安全研究者们所进行的工作。恶意软件编写者不断改变其代码以规避检测,而安全专家则需要不断更新检测策略和分类算法以应对新的威胁。 恶意软件研究是一个持续的过程,涉及多个学科领域和多种技术手段。随着人工智能技术的发展,特别是机器学习和深度学习的应用,恶意软件检测与分类技术也在不断进步。 恶意软件检测与分类是一个复杂且持续发展的领域,它需要多种技术手段的综合应用,包括机器学习、深度学习、自然语言处理和计算机视觉等。通过不断的研究和实践,可以提高检测的准确性,加强对恶意软件的防御能力,从而保护用户的网络安全。
2025-12-13 21:35:22 5.93MB python
1
Twin Higgs(TH)模型解释了不存在导致自然电弱对称破坏(EWSB)的新的彩色颗粒。 TH模型的所有已知紫外线完成度都需要一些低于Planck尺度的非扰动动力学。 我们提出了一种超对称模型,其中通过新的渐近自由规范相互作用引入了TH机制。 该模型具有自然的EWSB夸克,即使在普朗克尺度上介导了超对称断裂,胶合蛋白也重于2 TeV,并且具有有趣的风味现象学,包括顶级夸克衰变成希格斯玻色子和升夸克,这可能在大型强子对撞机中发现。
2025-12-10 23:40:28 299KB Open Access
1
的重大增强 最近,ALICE和STAR合作在外围强子A + A碰撞中观察到了在非常低的横向动量下的生产。 剧烈的强子重离子碰撞中,异常过量指向相干光子-核相互作用,而常规情况下仅在超外围碰撞中进行研究。 假设相干光产生是引起外围A + A碰撞中观察到的过量的基本机制,则其在具有核重叠的p + p碰撞即非单衍射碰撞中的贡献特别重要。 在本文中,我们对排他性进行计算 基于pQCD激励参数化的RHIC和LHC能量在非单衍射p + p碰撞中的光产生,使用世界各地的实验数据,可以进一步用于提高现象学计算中A + A的光产生的精度 碰撞。 速度的差分速度和横向动量分布。 从照片制作提出。 与之相比 从强子相互作用产生产物,我们发现光产物的贡献可忽略不计。
2025-12-06 21:15:56 1.18MB Open Access
1
自然语言处理(NLP)是计算机科学领域的一个重要分支,主要关注如何使计算机理解、解析、生成和操作人类语言。随着人工智能的发展,NLP在求职市场上的需求日益增长,尤其在招聘季如“秋招”期间,对于相关岗位的面试准备至关重要。下面,我们将根据提供的文件名称,详细探讨NLP在机器学习、Python编程和深度学习方面的关键知识点。 1. **机器学习与自然语言处理**: 机器学习是NLP的核心技术之一,它让计算机通过数据学习规律并做出预测。在NLP中,常见的机器学习任务包括文本分类、情感分析、命名实体识别等。例如,文档《自然语言处理八股文机器学习.docx》可能涵盖了朴素贝叶斯分类器、支持向量机(SVM)、决策树等算法在处理文本数据时的应用,以及如何构建特征向量、调整超参数和评估模型性能。 2. **Python与自然语言处理**: Python是NLP最常用的编程语言,其丰富的库资源如NLTK、Spacy、Gensim和TensorFlow等提供了强大的NLP工具。《自然语言处理八股文python.docx》可能讨论了Python在处理文本数据时的基本操作,如分词、去除停用词、词干化,以及如何使用这些库进行文本预处理、模型训练和结果可视化。 3. **深度学习与自然语言处理**: 深度学习,尤其是卷积神经网络(CNN)和循环神经网络(RNN),在NLP领域带来了革命性的突破。LSTM和GRU是RNN的变体,常用于处理序列数据。Transformer模型,如BERT和GPT系列,已成为当前NLP最先进的预训练模型。《自然语言处理八股文深度学习.docx》可能详细介绍了这些模型的架构、工作原理、优化策略(如Adam优化器)、损失函数和如何利用预训练模型进行下游任务的微调。 4. **面试准备**: 在准备NLP面试时,除了掌握以上技术外,还需要了解语言模型、句法分析、语义理解、知识图谱、情感分析等基础知识。此外,熟悉当前的科研动态,如预训练模型的最新进展,以及项目经验、问题解决能力、团队合作精神等软技能也是面试官关注的点。 NLP领域的面试准备涵盖了广泛的理论知识和技术应用,要求应聘者具备扎实的机器学习基础,熟练的Python编程技巧,以及对深度学习模型的理解和实践经验。通过深入学习和实践,将有助于在激烈的秋招竞争中脱颖而出。
2025-12-04 20:10:33 131KB 自然语言处理 求职面试
1
利用Lyapunov理论研究了鲁棒H∞滤波问题。对所有的时变不确定性,设计了一个稳定的滤波器使滤波误差满足指定的H∞性能。为了简化问题的推导过程,引入了辅助系统,并给出了滤波器存在的充分且必要条件。通过矩阵变换得到了设计滤波器的LMI方法,利用LMI工具箱可以方便地得到滤波器的表达形式。最后,数值算例说明了所设计方法的有效性和可行性。
2025-12-04 11:58:49 2.96MB 自然科学 论文
1
python自然语言处理结课项目,基于flask搭建的web系统 启蒙+提高 【 Anconda + python 3.7+mysql5.7 】,里面有 注册登录、主页面、新闻推荐、新闻分类、留言板、新闻问答系统、相似度计算和关系图、统计图、词云图等......选取模型+训练模型+模型测试+算法调优 >**这块主要就是一个增加和查看,和前面的注册登录没有太大的区别** **首先留言板就是往表中插入数据(注册)。后面的滚动的数据就是将后端取出来的数据展示在提前准备好的js上面(样式上面)** 项目简单,使用心强,单个模块拆卸简单 1、连接数据库 2、往相应的表中添加一些数据 3、读取表中的数据,展示在js上面(传递给js) 4、断开与数据库的连接 1、前端通过post方法把注册的用户名和密码传到后端。 2、连接数据库。 3、判断前端取来的数据是否为空。 4、上号密码不为空则将前端取到的用户名和密 1、前端通过post方法把注册的用户名和密码传到后端。 2、连接数据库 3、查询数据库是否有这一条数据 4、有,登陆成功,跳转页面。没有输出账号密码输入错误
2025-12-04 10:55:50 615.81MB 自然语言处理 新闻分类 pythonweb python
1
射频微电子机械系统RF MEMS开关的高隔离度与低插入损耗特性,同开关自身的结构参数密切相关。为了得到更好的开关性能,在设计过程中有必要对射频MEMS开关的相关参数进行优化。本文用ADS和HFSS仿真设计软件,对射频MEMS并联电容式开关的微波特性进行了分析和仿真,研究了MEMS开关的等效电路参数和结构参数的变化对RF MEMS开关微波特性的影响。仿真结果表明:等效电容参数和MEMS开关桥宽度是影响开关性能的关键参数,当开关的等效电容参数增加20 pF,或MEMS桥的宽度增加40μm时,RF MEMS开关
2025-11-28 16:05:29 668KB 自然科学 论文
1