本文讨论了一种改进的良性蠕虫传播模型,它基于网络蠕虫传播的基本法则和双因素模型。文章分析了在不同策略下,恶意蠕虫与良性蠕虫的状态转换,传播动力学方程以及二者传播趋势的详细内容。 要理解蠕虫传播模型,需要掌握其背景和相关的网络安全知识。网络蠕虫是一种自我复制的程序,能够在网络中进行自我传播,不需要用户交互就能自动完成感染过程。良性蠕虫是一种特殊类型的网络蠕虫,设计目的是为了对网络环境进行积极的影响,比如清理系统中的漏洞,而不是造成破坏。网络蠕虫的传播机制通常涉及系统漏洞利用,蠕虫程序的自我复制和传播,以及网络中不同主机间的相互作用。 文章中的动态方程描述了系统内部各状态量如何随时间变化。在网络安全领域,蠕虫的传播模型往往用数学方程来表达,这些方程描述了易受感染的主机(Susceptible, S),已感染的主机(Infected, I),已恢复的主机(Recovered, R),和阻塞状态的主机(Blocked, B)的数量变化。传播模型中重要的参数包括传播速率(β),恢复率(γ),以及阻塞率(μ)。β参数通常依赖于多种因素,如蠕虫的传播能力、网络环境、用户的安全意识等。γ参数描述了从感染状态恢复成易感状态的概率,而μ参数则是系统如何阻断蠕虫传播的度量。 根据文章的内容,新模型考虑了更复杂的传播策略,包括对恶意蠕虫和良性蠕虫传播趋势的动态分析。这种分析可能涉及了状态转换,即在特定策略下,易感个体如何转变为感染个体,感染个体又如何变为恢复状态或者阻塞状态。动态方程中的变量如β0(t)、β1(t)、β2(t)等可能是时间的函数,反映了蠕虫传播率的时变特性。 文章提到了“Two-Factor Model”,这很可能是指考虑了两个关键因素的传播模型,比如用户行为和系统漏洞的存在。正确的蠕虫传播模型分析需要详细地理解不同因素对网络蠕虫传播动力学的影响。例如,蠕虫的传播速度可能因为用户及时更新系统补丁而减慢,或者因为网络拓扑结构的特殊性而加速。 文章还对WAW蠕虫传播模型进行了错误说明的分析。WAW模型可能指的是一种特定的蠕虫传播模型,文章对其进行了详细的探讨和修正,以提供更准确的传播趋势预测。 文章中提及了符号I(t)、R(t)、Q(t)等,它们分别代表在时间t时的感染个体数、恢复个体数和阻塞个体数。在分析蠕虫传播模型时,对这些量的动态变化方程的求解,可以用来预测未来某个时刻网络中的蠕虫流行趋势。 这篇文章在网络安全领域对蠕虫传播模型进行了深入研究,特别是在不同策略下良性蠕虫和恶意蠕虫状态转换及传播趋势的分析,为理解和预测蠕虫行为提供了重要的理论基础。
2025-06-17 14:06:21 348KB 网络安全 网络蠕虫 良性蠕虫
1
家族性慢性良性天疱疮一个散发病例致病基因ATP2C1突变检测,张鼎伟,涂晨,综目的 研究慢性家族性良性天疱疮(Hailey-Hailey disease,HHD)一个散发患者ATP2C1基因的突变及可能致病原因。方法 通过外周血提取基因组DNA�
2025-06-17 10:17:38 623KB 首发论文
1
该数据集包括与良性和恶性乳腺癌相关的超声图像。图像通过旋转和锐化来增强,以产生足够数量的图像。共9000多张图片。 该数据集包括与良性和恶性乳腺癌相关的超声图像。图像通过旋转和锐化来增强,以产生足够数量的图像。共9000多张图片。
2022-12-29 11:28:32 564.33MB 乳腺癌 良性 恶性 超声
皮肤肿瘤数据集,该数据集由2357张恶性和良性肿瘤疾病的图像组成,这些图像来自国际皮肤成像合作组织(ISIC)。所有的图像都按照ISIC的分类进行排序,除黑色素瘤和痣的图像略占优势外,所有子集的图像都被分成相同数量的图像
2022-12-18 18:28:54 785.63MB 皮肤 肿瘤 数据集 图像
逻辑回归预测良性和恶性乳腺肿瘤实现二分类(使用 scikit-learn 和 XGBoost 两种方式),可扩展应用到小样本数据的故障诊断领域二分类问题 # 使用逻辑回归预测乳腺肿瘤是良性的还是恶性的 # 数据集为乳腺癌数据集,通过细胞核的相关特征来预测乳腺肿瘤为良性/恶性,这是一个非常著名的二分类数据集 # 数据集包含569个样本,其中有212个恶性肿瘤样本,357个良性肿瘤样本 # 共有32个字段,字段1为ID,字段2为label,其他30个字段为细胞核的相关特征 # scikit-learn实现逻辑回归 # XGBoost 实现逻辑回归 # XGBoost在预测结果上和scikit-learn有些差别,XGBoost的预测结果是概率,而scikit-learn的预测结果是0或1的分类,需要用户自己对其进行转化,程序能够实现scikit-learn 和XGBoost的概率输出和0或1分类输出 # 使用评估指标对分类和预测结果进行评估, 实现scikit-learn 和 XGBoost 两种逻辑回归方式对比分析
1
人工智人-家居设计-多元智能与英语学习风格良性搭配调查分析.pdf
2022-07-08 09:04:52 2.72MB 人工智人-家居
人工智能-非侵入性检查预测良性前列腺增生患者膀胱出口梗阻——基于人工神经网络模
疫情防控安全会议纪要内容(建立安全管理体系,人员履职到位、保持现场安全态势良性发展、现场工作持续管控).docx
发布的窗口: 汉恩汉明布莱克曼布莱克曼-哈里斯纳托尔平顶凯撒 这七个窗口的大多数实现,包括工具箱和函数库中的大多数实现,由于对底层连续时间函数的不明智采样而表现得很奇怪。 由于对这些功能进行了仔细、有条不紊的抽样,发布的版本表现良好且真实。 所有发布的窗口的主瓣宽度(以频率为单位)都为 1/N,其中 N 是样本数。 大多数其他版本的主瓣类似于 1/(N-1),由于采样过于稀疏,随着长度的减少而变得过宽。 Boxcar 窗口很好地说明了正确的行为。 不可能对 Boxcar 窗口进行错误采样,它的主瓣与 1/N 完全一样。 每个张贴窗口的 S/N 损失(平方均值除以均方)等于其基础连续时间函数的 S/N 损失,并且与窗口长度无关。 对于大多数其他版本,S/N 损失随着长度的缩短而恶化,这是由于主瓣宽度过大造成的同样不明智的采样。 从概念上讲,数据的窗口跨度是赋予非零权重的跨度。 如果离
2022-03-25 16:17:01 3KB matlab
1