AD9653-4通道125Mbps高速ADC AD9653是一款四通道、16位、125MSPS的高速模数转换器(ADC),它具有低成本、低功耗、小尺寸和易于使用的特点。下面是该设备的详细知识点: 低电压供电 AD9653支持1.8V供电操作,具有低功耗特点,每通道仅耗电164mW@\125MSPS。 高信噪比 AD9653具有高信噪比(SNR),在70MHz输入信号下,SNR可达76.5dBFS(2.0V p-p输入范围)和77.5dBFS(2.6V p-p输入范围)。 高动态范围 AD9653具有高动态范围,SFDR(spurious free dynamic range)可达90dBc(到Nyquist,2.0V p-p输入范围)。 低非线性 AD9653具有低非线性特点,DNL(differential nonlinearity)为±0.7LSB,INL(integral nonlinearity)为±3.5LSB(2.0V p-p输入范围)。 高速串行LVDS AD9653支持高速串行LVDS(ANSI-644,default)和低功耗、减少范围选项(类似于IEEE 1596.3)。 高带宽 AD9653具有650MHz的_full power analog bandwidth和2V p-p的输入电压范围(支持高达2.6V p-p)。 灵活的位方向 AD9653具有灵活的位方向,可以通过串行端口控制全芯片和individual通道power-down模式。 自适应测试模式 AD9653具有自适应测试模式,可以生成built-in和custom数字测试图案。 多芯片同步 AD9653支持多芯片同步和时钟-divider,具有programmable输出时钟和数据对准。 应用场景 AD9653广泛应用于医疗超声和MRI、高速度成像、四象射频接收器、多样化射频接收器、测试设备等领域。 AD9653是一款高性能、低功耗、低成本的高速ADC,非常适合需要高速数据采集和转换的应用场景。
2025-10-02 11:13:12 1.46MB 学习资料 研究资料
1
内容概要:本文详细介绍了基于ADS54J60的FMC HPC采集卡的设计与实现。该采集卡拥有4个通道,每个通道能够达到1Gsps的采样率和16bit的精度。文章首先探讨了硬件设计的关键要素,包括电源管理、PCB布局、时钟分配以及信号完整性优化。接着深入讲解了FPGA代码实现,涵盖了SPI配置、JESD204B接口、数据缓存机制等方面的技术细节。最后,作者分享了一些实际应用案例和调试经验,强调了在高速信号采集过程中需要注意的问题及其解决方案。 适合人群:从事高速信号采集系统设计的研发工程师和技术爱好者。 使用场景及目标:适用于需要高精度、多通道同步采集的应用场合,如雷达中频采集、示波器等领域。目标是帮助读者掌握从硬件设计到软件实现的完整流程,提高系统性能和稳定性。 其他说明:文中提供了详细的原理图、PCB布局图、Verilog代码片段以及Python脚本,便于读者理解和复现。此外,还附有完整的Altium工程文件和Gerber制板文件,方便进一步开发和量产。
2025-09-23 09:32:43 352KB
1
内容概要:本文详细介绍了针对XILINX FPGA平台的ADC12D1600高速ADC接口驱动的Verilog实现方法及其优化技巧。首先讨论了时钟架构的设计,强调了使用MMCM资源生成相位偏移90度的DQS时钟对于确保数据眼图质量的重要性。接着阐述了数据接收部分采用IDELAY2进行动态校准的具体实现方式,指出将DELAY_TYPE设为VAR_LOAD模式能显著提高系统稳定性。随后讲解了数据对齐逻辑的状态机设计,特别是关于训练模式匹配和数据窗口稳定的多周期验证机制。最后分享了一个重要的实践经验,即在Vivado中正确设置ADC时钟为异步组,避免因时序分析不当而导致的问题。此外还提到了用于实时数据环回检测的testbench模块以及推荐使用的FPGA型号。 适合人群:熟悉Verilog语言并有一定FPGA开发经验的研发人员,尤其是那些正在从事高速ADC接口设计工作的工程师。 使用场景及目标:帮助开发者掌握ADC12D1600高速ADC接口驱动的Verilog实现细节,包括但不限于时钟管理、数据校准、对齐逻辑等方面的知识和技术手段,从而能够成功地将其应用于实际项目当中。 其他说明:文中提供的完整工程已上传至GitHub,可供读者下载参考。同时提到,在K7系列FPGA上运行该驱动程序可以达到1.6Gsps的速度,但对于更高性能的应用,则建议选择UltraScale+以上的器件。
2025-06-27 17:42:07 2.67MB
1
内容概要:本文详细介绍了基于XDMA的PCIE高速ADC数据采集系统的实现方法及其应用。系统主要由AD9226模数转换器、Xilinx Kintex-7 FPGA和PC上位机构成。AD9226以70MSPS采样率工作,数据通过DDR3缓存和XDMA引擎经PCIe x8通道传输到PC端QT界面,实测传输带宽达3.2GB/s以上。文中详细讲解了FPGA端的数据组装、跨时钟域处理以及上位机端的内存映射和波形显示等关键技术,并分享了调试过程中遇到的问题及解决方案。 适合人群:具备一定FPGA开发经验的工程师和技术爱好者。 使用场景及目标:适用于需要高带宽、低延迟数据采集的应用场景,如工业数据采集、医疗成像等领域。目标是实现高效稳定的高速数据采集和传输。 其他说明:文中提供了详细的代码片段和调试技巧,帮助读者更好地理解和实现该系统。同时,还分享了一些性能优化的方法,如调整AXI突发长度、使用双缓冲策略等。
2025-06-14 15:22:56 373KB
1
ADC12DJ3200 FMC子卡:原理图、PCB设计与JESD204B源码解析及高速ADC应用,ADC12DJ3200 FMC子卡原理图&PCB&代码 FMC采集卡 JESD204B源码 高速ADC 可直接制板 ,ADC12DJ3200; FMC子卡原理图; FMC采集卡; JESD204B源码; 高速ADC; 可直接制板,"ADC12DJ3200高速采集卡原理与实现:FMC子卡PCB设计与JESD204B源码解析" 在现代电子系统设计领域中,高速模数转换器(ADC)扮演着至关重要的角色,尤其是在需要处理大量数据的应用中。ADC12DJ3200 FMC子卡作为一个集成了高速ADC技术的模块,不仅支持高速数据采集,还能够提供高质量的信号转换。本文将详细解析这款子卡的原理图、PCB设计以及其与JESD204B标准的源码实现,并探讨其在高速ADC应用中的具体实现。 原理图是理解任何电子模块功能和构造的关键。ADC12DJ3200 FMC子卡的原理图详细展示了其内部的电路连接和组件布局,是整个模块设计的基础。通过原理图,我们可以了解数据如何在ADC12DJ3200芯片中被采样、转换,并通过FMC(FPGA Mezzanine Card)接口与外部设备连接。 PCB设计则是在原理图的基础上,将电路转化为实际可制造的物理实体。PCB设计涉及到信号的完整性、电源的分配以及热管理等关键因素,这些都直接关系到FMC子卡的性能和可靠性。一个精心设计的PCB可以确保高速信号传输的稳定性和低噪声干扰,这对于高速ADC来说至关重要。 JESD204B是一种高速串行接口标准,用于连接高速ADC和FPGA。该标准通过串行通信来减少所需的I/O引脚数量,并且能够支持更高数据速率。了解JESD204B源码,特别是其在ADC12DJ3200 FMC子卡上的应用,有助于工程师在设计高速数据采集系统时,实现数据的正确传输和处理。 高速ADC的应用广泛,包括但不限于通信基站、雷达系统、医疗成像设备以及测试测量仪器。ADC12DJ3200作为一款具有12位精度和高达3.2 GSPS采样率的ADC,能够处理极为复杂和高速变化的模拟信号。通过FMC子卡,该ADC模块能够轻松集成到各种FPGA平台,从而扩展其应用范围和性能。 此外,子卡的设计和实现还需要考虑到与外部设备的兼容性和接口标准。通过深入分析子卡技术详解,我们可以了解到如何在现代电子通信系统中有效地应用这种高速模数转换器。 现代电子设计不仅仅是硬件的问题,软件和固件的实现同样重要。ADC12DJ3200 FMC子卡的源码,特别是与JESD204B接口相关的部分,是实现高性能数据采集系统的关键。工程师需要对这些源码有深入的理解,才能确保数据的正确采集、传输和处理。 随着科技的飞速发展,电子系统的设计和应用也不断演变。对于ADC12DJ3200 FMC子卡的深入研究和理解,将有助于推动相关技术的进步,并在未来可能出现的新应用中找到合适的位置。
2025-05-04 21:11:35 618KB 哈希算法
1
ADS54J60高速采集卡:原理图、PCB、代码及FPGA源码集成,4通道1Gbps 16bit高速ADC与直接制板功能,ADS54J60高速采集卡:四通道FMC子卡原理图、PCB及FPGA源码设计,直接制板应用,ADS54J60 高速采集卡 FMC 1G 16bit 4通道 采集子卡 FMC子卡 原理图&PCB&代码 FPGA源码 高速ADC 可直接制板 ,核心关键词:ADS54J60; 高速采集卡; FMC 1G 16bit 4通道; 采集子卡; FMC子卡; 原理图; PCB; 代码; FPGA源码; 高速ADC; 可直接制板。,“基于FPGA的高速采集子卡设计:ADS54J60四通道FMC 1G ADC板”
2025-02-26 11:31:24 573KB 正则表达式
1
STM32控制读取24位ADC芯片ADS1271例程,采用STM32CUBEIDE开发平台,以STM32F401为例,实现高速ADC芯片ADS1271(数据率达到105K SPS)的采样值读取。具体介绍见CSDN博文《STM32 MCO+SPI获取24位模数转换(24bit ADC)高速芯片ADS1271采样数据》:https://blog.csdn.net/hwytree/article/details/131130670 。
2023-09-08 21:33:02 6.94MB stm32 ADS1271 高速ADC 24-BIT
1
采用0.35 um BiCMOS工艺模型,电源电压为3.3 V,使用Cadence下Spectre工具对各单元电路和系统进行了仿真,结果表明各个单元电路均达到了整体性能的要求,对电路的整体仿真结果可以达到12位的精度
2023-03-03 17:21:32 12.24MB 高速ADC
1
在ADC设计中,噪声有多个来源,主要是 ADC 自身的电源,特别是在转换器周围设计和放置的电路走向。通过优化的设计考虑,可以把噪声对高速采集应用的影响最小化。数字电路通常会在其电源线路上产生噪声。如果还使用相同的电源对模拟或混合信号器件进行供电,则此噪声可以通过它们的电源插针耦合至这些元件。从某种程度上来说,它们的模拟或混合信号元件具有良好的电源抑制性能,这不会影响模拟或混合信号元件。 但是,正如数据表上所说明的那样,模拟和混合信号器件的电源抑制比 (PSRR) 通常指具有两个不同稳定直流电源电压的单个参数(例如偏移电压)的差异。此规格很少提及元件在抑制电源上的高频噪声方面如何发挥效能。有了高
1
在高速数据采集中,高速ADC的选用和数据的存储是两个关键问题。本文介绍一种精度为12位、采样速率达25Msps的高速模数转换器AD9225,并给出其与8位RAM628512存储器的接口电路。由于存储操作的写信号线是关键所在,故给出其详细的获取方法。
2022-11-05 23:50:14 149KB 高速ADC 高速数据采集 AD9225 文章
1