VisDrone数据集是视觉目标检测领域中一个广泛使用的数据集,特别针对无人机(Unmanned Aerial Vehicles, UAVs)视角的图像分析。这个数据集由一系列图像组成,包含了不同场景下的目标物体,如行人、车辆等,旨在促进无人机视觉理解和智能分析技术的研究。在给定的压缩包中,“部分visdrone数据集,含yolo格式标签”意味着它只包含了VisDrone数据集中的一部分,并且这些图像的标签是以YOLO(You Only Look Once)格式提供的。 YOLO是一种实时的目标检测算法,以其高效和准确著称。它的主要思想是将图像分割成多个网格(grid cells),每个网格负责预测其覆盖范围内的目标。YOLO标签通常包含四个数值,分别对应于目标框的中心坐标(相对于网格的相对坐标)和宽度与高度,再加上一个类别概率。这种紧凑的表示方式使得YOLO在处理大量目标时具有较高的速度优势。 VisDrone数据集的特性包括: 1. 多样性:图像来源于不同环境、天气和时间条件,涵盖城市、乡村、室内等多种场景。 2. 目标多样性:数据集中包含了多种目标类别,如行人、车辆、自行车等,模拟真实世界中的复杂情况。 3. 高精度标注:每个目标都有精确的边界框标注,确保了训练模型的准确性。 4. 大规模:尽管给出的是部分数据集,但仍然包含大量的图像和目标实例,适合深度学习模型的训练。 使用这部分VisDrone数据集,研究人员或开发者可以: 1. 训练和优化目标检测模型:由于VisDrone数据集的标注质量高,可以用来训练YOLO或其他目标检测模型,提升模型在无人机视角下的检测性能。 2. 模型泛化能力评估:通过对比完整数据集和部分数据集上的表现,可以评估模型对未见过的数据的泛化能力。 3. 实时性研究:由于数据集涉及无人机应用,所以可以研究模型在保持高精度的同时,如何实现快速响应,满足无人机实时性的需求。 4. 新方法验证:作为基准数据集,部分VisDrone数据集可以用于验证和比较新的目标检测算法或改进。 在实际应用中,这部分数据集可能适用于无人机监控、交通管理、安全防护等领域,帮助系统识别并跟踪无人机视野内的关键对象。通过深入理解和利用VisDrone数据集的特性,我们可以推动无人机视觉技术和相关领域的进步。
2025-06-05 10:04:35 78.11MB 数据集
1
基于YOLOv8与DEEPSort技术的多目标检测跟踪系统:包含56组visdrone测试视频、pyqt5界面设计与详细环境部署及算法原理介绍,基于YOLOv8和DEEPSort的多目标检测跟踪系统:深入探索环境部署与算法原理,附带56组visdrone测试视频的界面设计实战教程。,五、基于YOLOv8和DEEPSort的多目标检测跟踪系统 1.带56组测试视频,使用visdrone数据集。 2.pyqt5设计的界面。 3.提供详细的环境部署说明和算法原理介绍。 ,基于YOLOv8;DEEPSort多目标检测跟踪系统;56组测试视频;visdrone数据集;pyqt5界面设计;环境部署说明;算法原理介绍,基于YOLOv8和DEEPSort的56组视频多目标检测跟踪系统
2025-04-13 14:25:06 3.27MB
1
VisDrone2018 说明:后续可能不更新了。 Tips: this repo will not be updated. Baseline: Name maxDets Result Average Precision (AP) @( IoU=0.50:0.95) maxDets=500 15.8738%. Average Precision (AP) @( IoU=0.50 ) maxDets=500 21.7822%. Average Precision (AP) @( IoU=0.75 ) maxDets=500 17.1753%. Average Recall (AR) @( IoU=0.50:0.95) maxDets= 1 0.83255%. Average Recall (AR) @( IoU=0.50:0.95) maxDets=
2023-02-13 15:40:23 7.41MB faster-rcnn eccv-2018 visdrone Python
1
共8178张 训练集:测试集 为9:1 即 7275:903 主要为中小目标、密集目标,可作为小目标车辆训练检测 由于上传文件大小限制原因,内含网盘链接与提取码,请自行下载
1
1、YOLOv7算法Visdrone数据集训练权重 ,附有各种训练曲线图,可使用tensorboard打开训练日志 2、检测结果和数据集参考:https://blog.csdn.net/weixin_51154380/article/details/127346292?spm=1001.2014.3001.5502
2022-11-28 12:25:37 431.49MB Visdrone数据集 YOLOv7算法Visdrone
计算机视觉——数据格式转换,将Visdrone2019中的DET(可用来做目标检测)和VID(用来做视频目标检测和跟踪),含有readme.md和对应的代码,其中需要修改的路径部分均已说明,仅需简单进行路径修改,操作方便简单,更加适合新手小白。
1
1、yolov5-deepsort俯视场景下visdrone数据车辆检测和跟踪,包含YOLOv5训练好的visdrone数据集权重以及各种训练曲线 2、可以生成目标运动轨迹 3、pytorch框架,python代码 4、结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743
1、yolov5下俯视场景下车辆行人检测视觉检测,包含YOLOv5s和YOLOv5m两种训练好的visdrone数据集权重,以及PR曲线,loss曲线等等,有pyqt界面,目标类别为车辆行人等 2、pyqt界面可以检测图片、视频、调用摄像头 3、数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743 4、采用pytrch框架,python代码
2022-06-10 14:06:40 231.87MB Visdrone数据集YOLOv pyqt界面
1、Darknet版YOLOv4 visdrone数据集训练模型,训练结果文件,包含visdrone.data , visdrone.names, yolov4-visdrone.cfg, yolov4-visdrone_best.weights权重文件,并包含训练loss曲线和map曲线图, 2、用于检测各种俯视场景下的小目标,如行人、车辆等等
2022-05-12 21:05:27 227.96MB visdrone数据集训练模型 Darknet版YOLOv4
1、Darknet版yolov3 visdrone数据集训练模型,训练结果文件,包含visdrone.data , visdrone.names, yolov3 -visdrone.cfg, yolov3 -visdrone_best.weights权重文件,并包含训练loss曲线和map曲线图, 2、用于检测各种俯视场景下的小目标,如行人、车辆等等
2022-05-12 21:05:26 219.74MB Darknet版YOLOv3在V Darknet版yolov3