直接生成下载算法,后续可以导入Jlink下载中,通过jlink直接把资源下载到外部flash内。
2025-05-26 22:47:54 4.6MB stm32
1
倾斜影像匹配关键算法及应用研究 倾斜影像匹配是计算机视觉领域的研究热点之一,其应用广泛,涉及到无人机、航空航天、城市规划等领域。该领域的研究主要集中在倾斜影像匹配关键算法的设计和改进上,旨在提高匹配效率和扩大应用场景。 一、传统算法 传统的倾斜影像匹配算法主要基于特征匹配和深度学习的方法。特征匹配算法主要包括 SIFT、SURF、ORB 等,这些算法通过提取图像的特征点,并比较它们之间的相似性来进行匹配。深度学习的方法则主要基于卷积神经网络(CNN)和循环神经网络(RNN),通过训练神经网络来进行影像匹配。 二、无模板算法 近年来,无模板的倾斜影像匹配算法也得到了广泛。无模板算法通过直接比较倾斜影像和目标影像之间的像素值来进行匹配,避免了传统算法中需要预先提取特征点的步骤,具有更高的匹配效率。其中,基于互信息的无模板算法是最常用的方法之一,它通过计算像素之间的互信息来衡量影像之间的相似性。 三、应用场景 倾斜影像匹配算法在各个领域都有广泛的应用。在无人机领域,倾斜影像匹配被用于地形测量、建筑物三维重建等方面。在航空航天领域,倾斜影像匹配被用于地图测绘(DOM)、三维地形生成等领域。在城市规划领域,倾斜影像匹配被用于城市三维建模、建筑物检测等方面。 四、发展方向 未来,倾斜影像匹配关键算法的发展方向主要包括两个方面:提高匹配效率和扩大应用场景。在提高匹配效率方面,未来的研究将致力于寻找更高效的特征提取方法和匹配策略,以提高算法的匹配速度和准确性。在扩大应用场景方面,未来的研究将探索倾斜影像匹配算法在其他领域的应用,如医疗影像分析、虚拟现实等领域。 五、结论 倾斜影像匹配关键算法及应用研究具有重要的研究价值。本文对倾斜影像匹配的相关算法进行了综述,并探讨了其应用场景和未来发展方向。随着技术的不断发展,倾斜影像匹配将在更多领域得到广泛应用,并为人类带来更多的便利和服务。 六、无人机摄影测量影像匹配与纠正技术 无人机摄影测量技术已经成为地理信息获取的重要手段。这项技术通过高精度的无人机搭载高分辨率相机进行拍摄,获取大量高清晰度的地面影像,为实现地理信息的快速、准确获取提供了可能。然而,如何从这些影像中提取出精确可靠的信息,需要借助影像匹配与纠正技术。 七、影像匹配与纠正技术 影像匹配是无人机摄影测量的重要环节之一。其主要目的是找出不同影像中相同或相似的特征点,通过这些特征点将多幅影像进行几何变换,以实现影像之间的配准和拼接。影响影像匹配效果的因素主要包括影像质量、特征点检测和匹配算法的选择。 影像纠正则是通过对获取的影像进行几何畸变校正和地理坐标转换,将其还原为真实的地理空间信息。影响影像纠正效果的因素主要包括影像畸变、坐标系转换和地形高程数据的质量。 八、结论 无人机摄影测量影像匹配与纠正技术是实现地理信息准确、快速获取的关键手段。本文对无人机摄影测量影像匹配与纠正技术进行了详细探讨,总结了当前研究现状和发展趋势,并指出了未来可能面临的研究挑战。
2025-05-26 17:53:41 15KB
1
基于滑模观测器的永磁同步电机无感FOC算法研究:包括PLL位置提取与多种开关函数的对比分析,仿真模型搭建参考文献全解析,基于滑模观测器的永磁同步电机无感FOC 1.采用两相静止坐标系的SMO,位置提取方法采用PLL(锁相环),开关函数包括符号函数、sigmoid函数、饱和函数,可进行对比分析; 2.提供算法对应的参考文献和仿真模型仿真模型纯手工搭建 ,基于滑模观测器; 永磁同步电机无感FOC; 两相静止坐标系SMO; 位置提取PLL; 开关函数对比分析(符号函数、sigmoid函数、饱和函数); 算法参考文献; 仿真模型纯手工搭建。,基于SMO与多种开关函数的永磁同步电机无感FOC研究及仿真分析
2025-05-26 16:29:59 319KB 哈希算法
1
内容概要:本文深入探讨了四桥臂三维空间矢量脉宽调制(3D-SVPWM)算法在电压型逆变器中的应用。首先介绍了四桥臂逆变器相较于传统三相逆变器的独特优势,即能够实现单桥臂电压的独立控制。接着详细解释了3D-SVPWM算法的工作原理,包括三维空间矢量的概念及其在逆变器输出电压控制中的应用。文中还提供了Python和Matlab的代码示例,展示了如何生成参考电压矢量并绘制负载电压波形。此外,重点讨论了负载电压的观察与分析,特别是在处理不对称负载时的表现。最后,强调了坐标变换、矢量选择以及占空比计算等关键技术细节,并通过实验数据验证了该算法的有效性和优越性能。 适合人群:从事电力电子、电机驱动、不间断电源等领域研究的技术人员和高校相关专业师生。 使用场景及目标:适用于需要深入了解四桥臂逆变器控制算法的研究人员和技术开发者,旨在帮助他们掌握3D-SVPWM算法的具体实现方法及其在实际应用中的表现。 其他说明:文章不仅提供了理论分析,还包括了大量的代码示例和实验结果,有助于读者更好地理解和应用该算法。
2025-05-26 14:38:47 446KB
1
STM32步进电机S型加减速算法源码与详细解析——基于stm32f103的实践指南,STM32步进电机S型加减速算法源码与详细解析——基于stm32f103的实践应用,stm32步进电机加减速代码 stm32f103 stm32步进电机S型加减速程序源码与详细分析,资料为算法实现以及算法的相关讲解,例程中有stm32f103步进电机S型加减速的完整工程代码,对步进电机s型加减速控制很有帮助。 ,核心关键词:stm32步进电机; S型加减速; 程序源码; 算法实现; 工程代码; 帮助。,STM32F103步进电机S型加减速程序源码及算法分析
2025-05-26 14:03:00 2.02MB kind
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-05-26 09:19:33 2.66MB matlab
1
内容概要:本文详细介绍了利用遗传算法解决含分布式电源(DG)的配电网故障恢复问题的方法及其Matlab实现。首先阐述了遗传算法的基本思想,即通过模拟自然选择和遗传机制,在多种供电方案中筛选出最优解。接着展示了具体的实现代码,包括适应度函数、种群初始化、交叉变异操作等关键模块。特别是在适应度函数中,综合考虑了负荷恢复、DG利用率以及线路容量等因素的影响。此外,文中还讨论了如何处理DG接入带来的额外复杂性和约束条件,如电压越限检测、潮流计算等。最后,通过仿真实验验证了该方法的有效性,结果显示引入DG后平均恢复时间显著缩短,算法收敛速度提高。 适合人群:从事电力系统研究和技术开发的专业人士,尤其是对智能电网、故障恢复算法感兴趣的科研人员和工程师。 使用场景及目标:适用于需要优化配电网故障恢复策略的实际工程场景,旨在提高供电可靠性,缩短停电时间,降低运维成本。通过学习本文,读者能够掌握基于遗传算法的故障恢复方法的具体实现流程和技术要点。 其他说明:文中提到了一些常见的陷阱和注意事项,如初始版本未考虑线路容量约束导致变压器过载等问题,并给出了相应的解决方案。同时推荐了几篇重要的参考文献,帮助读者进一步深入理解和扩展相关领域的知识。
2025-05-25 22:30:36 2.45MB
1
这是一个基于C/C++的停车场管理系统,主要包括 Enter_Parking()、Exit_Parking()、Print() 以及一些栈和队列的操作函数。系统通过栈和队列来管理停车场和便道上的车辆,实现了车辆的进场、出场和打印停车信息的功能。 在进场函数 Enter_Parking() 中,系统检查停车场和便道的状态,将车辆加入到合适的位置,并更新车辆的状态信息。如果停车场已满则将车辆加入到便道上。在出场函数 Exit_Parking() 中,系统根据车牌号查找车辆并更新状态信息,实现车辆的出场操作。Print() 函数用于打印停车场和便道的基本信息。 栈 SeqStack 和队列 LQ 是基础的数据结构,用于存储车辆的信息和管理车辆的进出。这个停车场管理系统通过栈和队列的数据结构实现了对车辆的管理,可以较为灵活地处理车辆的进出和信息展示。 停车场分为左右两侧共10个车位,这两侧分别用两个栈来表示,如果这10个车位全停满,后来的汽车进入便道等待,如果停车场内有车离开,便道上的第一辆车进入该车位。
2025-05-25 22:20:07 411KB 数据结构 算法设计
1
针对蚁群算法存在易过早收敛、出现停滞现象、陷入局部极值的问题,提出S型信息素更新策略与Alopex算法相耦合的改进蚁群优化算法(IACO).该算法定义全新的S型动态自适应信息素全局更新函数,使信息素增量随迭代次数和目标函数值变化而动态变化,同时耦合Alopex算法以提高算法的局部搜索能力.将IACO算法应用于支持向量机参数的优化中,构成IACO-SVM模型.利用UCI标准数据集进行数值实验.研究结果表明:IACO算法具有较强的寻优性能,IACO-SVM模型具有较高的平均分类准确率和较好的稳定性.
2025-05-25 20:28:48 439KB 蚁群算法 支持向量机 参数优化
1
内容概要:本文详细介绍了K-means算法在图像处理中的应用,特别是图像分割和图像压缩两个方面。文章首先概述了K-means算法的基本原理,包括聚类中心的选择、迭代更新过程及误差平方和的计算。在图像分割方面,K-means算法通过对像素的颜色或纹理特征进行聚类,将图像划分为若干有意义的子区域,从而实现目标区域的有效提取。文中指出,聚类簇数量的选择对分割结果有重要影响,过多或过少都会导致分割效果不佳。在图像压缩方面,K-means通过减少图像中的颜色数量,实现有损压缩,以降低图像数据量同时保持视觉质量。此外,文章还探讨了K-means算法的局限性,如对初始聚类中心敏感、易陷入局部最优等问题,并提出了改进方向,包括自适应聚类数确定、多特征融合及结合深度学习等。最后,文章展望了K-means算法在图像处理领域的未来发展,特别是在医学图像处理和遥感图像处理等领域的应用潜力。 适合人群:具备一定数学基础和编程经验的图像处理研究人员和技术开发者,尤其是对聚类算法和图像处理感兴趣的读者。 使用场景及目标:①理解K-means算法在图像分割和压缩中的具体应用;②掌握K-means算法的局限性及其改进方法;③探索K-means算法在更多图像处理领域的潜在应用,如医学图像和遥感图像处理。 其他说明:本文不仅介绍了K-means算法的基本原理和应用,还结合了大量文献资料,提供了详细的理论分析和实验验证,适合希望深入了解K-means算法在图像处理中应用的读者。文章还提出了未来的研究方向,为后续研究提供了有价值的参考。
1