本书是想进入雷达领域的最好书籍,讲解简洁明了,但又清楚,重要的雷达知识都囊括,使我所读的最好的入门教材
2024-10-22 20:23:56 50.37MB 信号处理
1
在本实践教程中,我们将深入探讨如何利用ROS(Robot Operating System)、YOLOV8和SLAM(Simultaneous Localization and Mapping)技术实现智能小车的导航功能,特别是通过激光雷达进行环境建图。这一部分主要关注激光雷达与SLAM算法的结合应用。 ROS是一个开源操作系统,专为开发机器人应用而设计。它提供了诸如硬件抽象、消息传递、包管理等基础设施,使得开发者可以更专注于算法和功能实现,而不是底层系统集成。在智能小车导航中,ROS扮演着核心协调者的角色,负责处理传感器数据、执行任务调度以及与其他节点通信。 YOLO(You Only Look Once)系列是目标检测算法,用于识别图像中的物体。YOLOV8是YOLO系列的最新版本,相较于之前的YOLOV3和YOLOV4,它可能在速度和精度上有进一步提升。在智能小车导航中,YOLOV8可以帮助小车实时识别周围的障碍物,确保安全行驶。 SLAM是机器人领域的一个关键问题,它涉及机器人同时定位自身位置并构建环境地图的过程。对于没有先验地图的未知环境,SLAM是必要的。SLAM算法通常包括数据采集(如激光雷达或视觉传感器)、特征提取、状态估计和地图更新等步骤。在激光雷达+SLAM的场景下,雷达数据提供了丰富的距离信息,帮助构建高精度的三维环境模型。 激光雷达(LIDAR)是一种光学遥感技术,通过发射激光束并测量其反射时间来确定距离。在智能小车导航中,激光雷达可以提供连续的、密集的点云数据,这些数据是构建高精度地图的基础。SLAM算法通常会选择如Gmapping或 Hector SLAM等专门针对激光雷达的数据处理框架,它们能有效地处理点云数据,构建出拓扑或几何地图。 在“robot_vslam-main”这个项目中,我们可以预期包含以下组件: 1. **ROS节点**:用于接收和处理激光雷达数据的节点,如`lidar_node`。 2. **SLAM算法实现**:可能是自定义的SLAM算法代码或预封装的库,如`slam_algorithm`。 3. **地图发布器**:将SLAM算法生成的地图以可视化的形式发布,如`map_publisher`。 4. **小车定位模块**:结合SLAM结果与车辆运动学模型,计算小车的实时位置,如`localization_node`。 5. **路径规划与控制**:根据地图和目标位置,规划安全路径并控制小车移动,如`planner`和`controller`节点。 通过整合这些组件,我们可以实现智能小车的自主导航,使其能够在未知环境中有效移动,避开障碍物,并构建出周围环境的地图。在实际操作中,还需要考虑如何优化算法性能、处理传感器噪声、适应不同的环境条件,以及实现有效的故障恢复机制,确保系统的稳定性和可靠性。通过深入学习ROS、YOLOV8和SLAM,开发者可以不断提升智能小车的导航能力,推动机器人技术的进步。
2024-10-11 10:13:31 60KB
1
HypeLCNN概述 该存储库包含论文“具有用于高光谱和激光雷达传感器数据的光谱和空间特征融合层的深度学习分类框架”的论文源代码(正在审查中) 使用Tensorflow 1.x开发(在1.10至1.15版上测试)。 该存储库包括一套完整的套件,用于基于神经网络的高光谱和激光雷达分类。 主要特点: 支持超参数估计 基于插件的神经网络实现(通过NNModel接口) 基于插件的数据集集成(通过DataLoader接口) 培训的数据有效实现(基于内存的有效/基于内存/记录的) 能够在经典机器学习方法中使用数据集集成 神经网络的培训,分类和指标集成 胶囊网络和神经网络的示例实现 基于CPU / GPU / TPU(进行中)的培训 基于GAN的数据增强器集成 交叉折叠验证支持 源代码可用于在训练大数据集中应用张量流,集成指标,合并两个不同的神经网络以进行数据增强的最佳实践 注意:数据集文件太
2024-10-09 21:46:44 128KB deep-neural-networks tensorflow fusion lidar
1
逆合成孔径雷达(Inverse Synthetic Aperture Radar, ISAR)是一种高级的雷达成像技术,主要用于对运动目标进行高分辨率的二维或三维成像。VictorCChen编写的书籍《逆合成孔径雷达成像》附带的代码详细介绍了ISAR成像的原理与实践,特别适合于学习和研究该领域的读者。MATLAB作为一种强大的数值计算和可视化工具,被广泛应用于ISAR的仿真和分析。 在ISAR系统中,雷达发射脉冲并接收目标反射的信号,通过计算目标相对于雷达的相对运动参数(如径向速度和方位角),可以重建目标的图像。ISAR的仿真主要包括以下几个关键步骤: 1. **数据采集**:模拟雷达发射和接收的信号,包括脉冲压缩、匹配滤波等过程,以获取足够的信息用于成像。 2. **运动补偿**:由于目标的运动,接收到的回波信号会受到多普勒效应的影响,需要进行运动参数估计并进行补偿,以消除运动模糊。 3. **回波数据处理**:执行快速傅里叶变换(FFT)将时域信号转换到频域,进一步处理以提高图像质量。 4. **成像算法**:常见的ISAR成像算法有距离-多普勒算法(Range-Doppler Algorithm, RDA)和基于二维FFT的算法。RDA首先根据多普勒信息对数据进行排序,然后进行距离压缩;二维FFT算法则直接在时间和频率上对数据进行操作。 5. **图像重构**:将处理后的数据映射到图像平面上,形成目标的二维或三维图像。 MATLAB代码可能涵盖了以上所有步骤,每个子文件可能对应一个特定的处理环节,例如`motion_compensation.m`用于运动补偿,`radar_signal_simulation.m`用于雷达信号的模拟,`range_compression.m`则可能实现了距离压缩等。 学习这些代码不仅可以深入理解ISAR成像的理论,还可以锻炼实际编程能力。通过对代码的阅读和调试,读者能够更好地掌握ISAR系统的复杂性,并有可能扩展到其他雷达成像技术,如合成孔径雷达(SAR)或动目标显示(MTI)。 在实际应用中,ISAR广泛用于军事、航空、海洋监测等领域,能够对高速移动的目标进行清晰成像,如飞机、舰船等。因此,理解和掌握ISAR的仿真与成像技术对于相关领域的科研和工程人员至关重要。VictorCChen的这本书和代码库提供了宝贵的实践资源,对于深入学习ISAR技术非常有帮助。
2024-09-30 16:11:24 30.59MB matlab ISAR
1
本设计研究出一款基于超声波的倒车雷达系统。系统采用STM32F103C8T6单片机作为主控制器, 利用超声测距的原理, 设计了一种超声波测距装置,该装置可以对前方的障碍物进行距离探测并把障碍物距离信息通过OLED显示出来。并且根据实际情况在单片机内部设置一个临界值,当通过超声波探测的距离小于临界值时,声光报警,提醒前方距离变小。可以根据声光报警提示报警,通过提示得知距离是否在正常范围,从而达到报警的目的。即本次设计的倒车雷达系统主要具有以下功能: 1、具有实时测量距离的功能,在一定范围内实现测距,距离小于一定时,发出声光报警提示。 2、具有实时显示功能,单位精确到厘米。 3、安全距离可以调,可通过按键修改并保存。 全套设计资料,包括源码、PCB文件、论文、实物图等
2024-09-27 10:22:52 4.86MB stm32
1
14-基于stm32单片机毫米波雷达测距报警系统(程序+原理图+元器件清单全套资料).rar
2024-09-20 09:28:18 17.63MB
1
雷达扫描图,在影视作品中见到较多,比如飞机雷达、舰艇雷达,有一个扫描线转圈代表雷达一周旋转或一个批次的收发,发现目标就在表盘上标记位置。和仪表盘类似,仪表盘有底盘背景图、同圆、刻度、刻度值、旋转的指针。在仪表盘的基础上略作修改,比如指针换成带有余辉的扫描扇面,就能完成一个雷达扫描图
2024-09-19 10:18:39 8KB
1
【项目资源】: 包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。 包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。
1
合成孔径雷达(Synthetic Aperture Radar ,简称SAR)是一种高分辨率成像雷达技术。它利用脉冲压缩技术获得高的距离向分辨率,利用合成孔径原理获得高的方位向分辨率,从而获得大面积高分辨率雷达图像。
2024-08-26 12:58:21 396KB SAR点目标
1
"三员管理系统,含雷达扫描demo"是一款基于QT框架开发的简易管理软件,主要针对管理员、审计员和普通用户这三种角色进行权限管理和操作。QT是一个跨平台的C++图形用户界面应用程序开发框架,它提供了丰富的GUI库和网络功能,使得开发者能够便捷地创建出美观且功能齐全的应用程序,不仅限于Windows平台,还能运行在Linux、Mac OS等多平台环境。 该系统的核心特点是实现了权限的三级分化,管理员通常拥有最高权限,可以对系统进行全面管理,包括用户增删改查、设置审计策略等;审计员则负责监督和审计系统的操作记录,确保数据安全与合规性;普通用户则仅能访问和操作其被授权的功能。这种设计符合许多企业或组织对于信息安全和合规性的需求,特别是在金融、政府、医疗等领域。 在提供的压缩包文件中,"build-QPDF2-Desktop_Qt_5_14_2_MinGW_32_bit-Release.zip"是一个构建好的可执行文件,表明该系统使用了QT 5.14.2版本,并且是用MinGW 32位编译器编译的。MinGW是Minimalist GNU for Windows的缩写,是一个可让Windows环境下编译原生Win32程序的工具集。这表明该程序可以在32位的Windows系统上直接运行。 而"QPDF2.zip"可能包含了项目的源代码和其他资源文件。QPDF2可能是项目的名字,这里的2可能代表版本号,表示这是一个更新或改进过的版本。源码对于开发者来说极其宝贵,因为它们允许用户深入了解系统的工作原理,进行自定义修改或者二次开发。sqlite数据库文件"user.db"是系统存储用户信息和权限设置的地方,SQLite是一种轻量级的、嵌入式的关系型数据库,广泛应用于各种小型应用,无需单独的服务器进程,方便集成和管理。 学习和理解这个系统,可以从以下几个方面入手: 1. QT编程基础:掌握QT的信号与槽机制、布局管理、控件使用等基础知识,以便理解代码逻辑。 2. 数据库操作:熟悉SQL语言和SQLite数据库的使用,理解如何通过QT与数据库进行交互,进行数据的读写和查询。 3. 权限管理模型:了解如何设计并实现不同角色的权限分配和验证机制。 4. GUI设计:研究QT中的图形界面设计,如窗口、菜单、对话框等,以及如何响应用户的操作。 5. 跨平台开发:理解QT如何实现跨平台兼容,以及在不同操作系统下的编译和部署过程。 通过深入研究这个系统,开发者不仅能提升QT编程技能,还能掌握到权限管理的实现方式,对于提升个人在软件开发领域的专业能力有很大帮助。
2024-08-25 14:45:25 7.98MB
1