由于文件大小限制,上传一个mat格式的高光谱图像,直接用matlab中的load函数读取.
2021-11-02 13:33:39 47.21MB 高光谱图像
1
SLIC 高光谱图像降维...........................................................................................................................................................................................................
2021-10-31 10:52:46 12KB SLIC 高光谱图像 降维
1
matlab遥感分类代码CNN-AL-MRF 这就是《Hyperspectral Image Classification with Convolutional Neural Network and Active Learning》的代码。 如果您使用此代码,请在您的工作中引用以下论文。 [1] 曹向勇,姚敬,徐宗本,孟德宇。 具有卷积神经网络和主动学习的高光谱图像分类。 IEEE 地球科学与遥感学报,2020 年。() [2] H. Bi、F. Xu、Z. Wei、Y. Xue 和 Z. Xu,一种用于最小监督 polsar 图像分类的主动深度学习方法。 IEEE 地球科学与遥感学报,2019 年。 在 Windows 中安装 Matconvnet 请按照网站上的说明进行操作:。 再现结果 重现第四部分的实验结果。 D(1),请跑 matlab CNN_AL_MRF_main.m 接触: 如果您有任何问题,欢迎与我联系( / )。
2021-10-30 15:25:58 8.28MB 系统开源
1
高光谱图像聚类的有效算法
2021-10-29 09:52:03 1014KB 研究论文
1
1.光谱解混步骤 步骤一: 端元提取 步骤二: 丰度反演
2021-10-29 08:52:10 2.66MB 高光谱 混合像元 分解
1
分类过程是分析高光谱图像数据的重要任务之一。 支持向量机(SVM)是最流行和使用最广泛的分类器,其性能正在不断提高。 近来,与仅考虑像素的光谱特征的方法相比,利用空间和光谱信息的方法更加充分,鲁棒,有用和准确。 在本文中,通过使用空间像素关联(SPA)处理从高光谱数据中提取区域纹理信息,以进一步提高SVM技术的分类性能。 为了提高分类的准确性,提出了一种利用SPA特征的支持向量机的新方法。 此外,该手稿中还提出了一种可用于解决像素不正确问题的新方法,即“增长类的控制过程”(CPoGC)。 为了证明所提方案的有效性,我们进行了印度松站点(IPS)上的AVIRIS高光谱数据实验,以将所提出的分类方法与一些现有的基于SVM的技术(例如SC-SVM和PSO-SVM)进行比较,以及一些传统的方法,例如K-NN和K-means。 实验结果表明,所提出的方法明显优于这些众所周知的分类算法。
2021-10-21 16:24:15 1006KB Control Process of Growing
1
一个matlab的高光谱图像分割程序,程序没有错误直接运行就可以但是解释比较少
2021-10-21 12:00:34 42.44MB matlab 高光谱图像 图像分割
1
高光谱图像分离matlab代码考虑光谱可变性的多时相高光谱图像的在线解混 描述:与描述的方法相关的 Matlab 代码 P.-A. Thouvenin, N. Dobigeon 和 J.-Y. Tourneret -考虑光谱可变性的多时相高光谱图像的在线解混, IEEE Trans。 图像处理,卷。 25,没有。 9,第 3979-3990 页,2016 年 9 月。 作者: P.-A. Thouvenin, pierreantoine[dot]thouvenin[at]gmail[dot]com 实验:要在文章中报告的真实数据上运行具有代表性的实验示例,请配置并运行main.m脚本。 依赖关系:当前代码包括以下出版物中描述的 MATLAB 函数,并由其作者开发。 [1] JM Nascimento 和 JM Bioucas-Dias -顶点分量分析:一种分离高光谱数据的快速算法, IEEE Trans。 地球科学。 遥感,卷。 43,没有。 4,第 898--910 页,2005 年 4 月。 [2] JM Bioucas-Dias 和 MAT Figueiredo -约束稀疏回归的
2021-10-20 20:31:12 72.01MB 系统开源
1
Deep Feature Extraction and Classification of Hyp全文翻译(带公式)
2021-10-18 17:02:23 4.91MB 高光谱 卷积神经网络
1
该软件包提供了用于频谱总变化(STV)降噪算法[1]的MATLAB代码,这是一种用于高光谱图像的新降噪算法,可从观测到的数据中估计整个频谱轴上的噪声水平。 STV去噪算法的命令是 out_stv = 光谱电视(hyper_noisy,选择); 其中 hyper_noisy 是输入图像, opts 是参数。 输入图像应该是 3-D 噪声图像(高光谱图像或视频)。 此外,在编写命令之前,需要将 opts.beta 设置为 [1 1 0.1]。 输出图像存储为 out_stv.f。 有关详细信息,请参阅随附的用户指南。 如需更多信息和引文,请参阅: [1] Chien-Sheng Liao、Joon Hee Choi、Delong Zhang、Stanley H. Chan 和 Ji-Xin Cheng,“通过总变异最小化对受激拉曼光谱图像进行降噪”,物理化学杂志 C,2015 年 7 月
2021-10-12 10:36:51 12.32MB matlab
1