长基线中微子实验的主要目的之一是明确测量三个中微子振荡图中中微子扇形中的CP违反相位。 在标准模型以外的物理条件下,由于已知的简并性问题,CP阶段的确定将更加困难。 在非标准交互作用(NSI)的框架中,我们以精确的分析公式计算出现概率,并分析存在此简并性问题的参数区域。 我们还讨论了在长基线实验中可以探查NSI参数简并性的一些情况。
2025-07-17 19:52:53 1.1MB Open Access
1
在费米实验室的短基线中微子(SBN)程序的光束中将产生质量在MeV范围及以下的几乎无菌的中微子。 在本文中,我们研究了SBN通过其探测器随后的衰变发现这些粒子的可能性。 我们讨论了在标准模型的最小和最小扩展中在SBN处可见的衰减,并执行模拟以计算可放置在没有信号的情况下的参数空间约束。 我们证明了SBN程序可以在N→νl + l-和N→l±π∓等严格约束的通道上扩展现有边界,而由于液氩技术的强大粒子识别能力,它们也经常将边界设置在 N→νγ和N→νπ0等被忽略的通道。 此外,我们考虑了改进的事件定时信息在三个检测器上的现象学影响。 除了考虑其在减少背景方面的作用外,我们还注意到,如果SBND和ICARUS中的光检测系统可以达到纳秒级的时间分辨率,则可以直接观察到有限无菌中微子质量的影响,从而为此类提供了吸烟枪的特征。 模型。 我们始终强调,寻找重度几乎不育的中微子是对eV级振荡进行搜索的补充新的物理分析方法,它将扩展SBN的BSM程序,而无需对光束或探测器进行修改。
2025-07-17 18:21:02 1.45MB Open Access
1
重新检查ILL实验,这是“反应器异常”实验之一。 ILL的基线为8.78 m,是反应堆异常短基线实验中最短的,该实验发现电子抗中微子消失的最大部分(约20%)。 如果先前的分析没有忽略ILL实验,他们会使用完全新颖且不合理的函数形式的卡方,即卡方幅度(也称为“比率分析”),或者使用频谱形式对卡方进行重复计算。 系统错误。 我们进行了分析,该分析利用了标准的常规形式用于卡方,以及派生的函数形式用于光谱方。 我们发现,当用包括光谱信息的常规卡方或与通量大小无关的光谱卡方进行分析时,与常规的无振荡光谱相比,ILL实验发现中微子光谱存在明显的畸变。 用第四中微子来解释这一点,而不是分析中某些方面(例如能量校准)的错误,结果是第四中微子可能的质量平方差的一组特定值,以及最小卡方差 与以前的分析相比,该值大大提高。 对于Huber通量和常规卡方,两个最优选的值分别是0.90和2.36 eV2的质量平方差,分别在Δχmin2值为-12.1和-13.0(3.5和3.6σ)时优选。 对于大亚湾通量和常规卡方,我们发现在Δχmin2分别为-10.5和-11.7(3.2和3.4σ)时优选0.95和2.36
2025-07-17 14:56:59 291KB Open Access
1
我们推导了一个三态顶点模型的传递矩阵特征值,该模型的权重基于R矩阵而不是差分形式,并且光谱参数位于第5类曲线上。 我们已经证明,传递矩阵特征值和Bethe方程的基本构造块都可以用椭圆曲线上的亚纯函数表示。 我们讨论了源自R矩阵第二光谱参数的特定选择的潜在自旋一链的属性。 我们提供了数值和分析证据,取决于相互作用耦合的强度,相应的低能激发可以是无隙的或无质量的。 在大规模阶段,我们提供分析和数值证据来支持最小能隙的精确表达。 我们指出,将这两种不同的物理状态分开的临界点与权重几何退化为一种曲线的并集的临界点重合。
2025-07-17 13:50:21 352KB Open Access
1
预测和观察到的反应堆反中微子通量之间的〜3σ差异(被称为反应堆反中微子异常)继续引起人们的兴趣。 最近在反应堆抗中微子光谱中发现意外突增的迹象,以及不同裂变同位素通量不足的迹象,似乎不利于对无菌中微子振荡的异常解释。 鉴于有关电子(反)中微子消失的所有可用数据,我们严格审查该结论。 我们发现,基于全局数据,无菌中微子假设不能被拒绝,并且与来自不同裂变同位素的中微子通量的单个重新定标相比,它只是轻度的不利。 主要原因是NEOS和DANSS实验的最新数据中存在光谱特征。 如果以表面值对反应堆通量进行最新的预测,则无菌中微子振荡可以对全局数据进行一致的描述,相对于无振荡情况,其重要性接近3σ。 即使反应堆的通量和光谱没有任何拟合,仍然保留了2σ的暗示,以无菌中微子为准,允许的参数区域与关于振荡的异常解释相一致。
2025-07-17 12:32:06 1.13MB Open Access
1
在IT行业中,C#是一种广泛使用的编程语言,尤其在开发Windows桌面应用和.NET框架相关项目时。本示例中,我们将探讨如何利用C#连接到ACCESS数据库,从中读取数据,并根据这些数据生成日报和月报。这在企业级应用程序中非常常见,用于汇总和分析业务数据。 要连接到ACCESS数据库,你需要使用ADO.NET库,这是.NET Framework的一部分。在C#中,你可以创建一个`OleDbConnection`对象来建立与数据库的连接。以下是一个基本的连接字符串模板: ```csharp string connectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=TXDB2.mdb;User ID=;Password="; ``` 请注意,这里的`TXDB2.mdb`是你的数据库文件名,如果数据库文件不在程序运行目录下,需要提供完整的路径。对于早期版本的ACCESS(如MDB格式),使用`Microsoft.Jet.OLEDB.4.0`,而对于ACCDB格式的新版本,应使用`Microsoft.ACE.OLEDB.12.0`。 连接数据库后,你需要打开连接: ```csharp using (OleDbConnection connection = new OleDbConnection(connectionString)) { connection.Open(); // ...其他操作 } ``` `using`语句确保在操作完成后会正确关闭并释放资源。 接下来,使用`OleDbCommand`对象执行SQL查询来读取数据。例如,如果你有一个名为`Sales`的表,要获取日报,你可以查询一天内的销售记录: ```csharp string query = "SELECT * FROM Sales WHERE SaleDate = @date"; OleDbCommand command = new OleDbCommand(query, connection); command.Parameters.AddWithValue("@date", DateTime.Today); ``` 同样,为了生成月报,你可能需要修改查询,比如: ```csharp string query = "SELECT * FROM Sales WHERE MONTH(SaleDate) = MONTH(@month) AND YEAR(SaleDate) = YEAR(@year)"; command.Parameters.AddWithValue("@month", DateTime.Now.Month); command.Parameters.AddWithValue("@year", DateTime.Now.Year); ``` 执行命令并使用`OleDbDataReader`读取结果: ```csharp using (OleDbDataReader reader = command.ExecuteReader()) { while (reader.Read()) { // 处理每条数据 } } ``` 生成报表可以使用各种库,如 Crystal Reports 或者直接使用 C# 的数据分析和可视化库,如 EPPlus(用于Excel)或 ReportViewer 控件。数据读取后,可以根据需要进行聚合、过滤和格式化,然后写入报表文件。 在这个过程中,`Access_connect`可能是用于连接数据库的代码示例或实用工具。确保正确引用了相关的DLL文件,并且在使用连接字符串和查询时遵循最佳实践,避免SQL注入等安全问题。 C#连接ACCESS数据库并生成日报、月报的过程包括:建立连接、编写SQL查询、执行查询并读取数据,最后使用适当的数据处理和报表生成工具呈现结果。这个过程涵盖了数据库交互、参数化查询以及报表设计等多个核心IT技能。
2025-07-17 10:54:45 2.37MB access
1
我们采用2015年发布的普朗克数据和重子声振荡(BAO)测量(包括在红移z = 1.52处的新DR14类星体样品测量)来更新对宇宙学参数的约束,并得出结论,六参数ΛCDM模型是优选的 。 探索对ΛCDM模型的一些扩展,我们发现w CDM模型中暗能量的状态方程读数为w = -1.036±0.056,宇宙中相对论自由度的有效数为Neff = 3.09-0.20 + 在Neff +ΛCDM模型中为0.18,并且在68%置信度(CL)和95%CL下,Ωk+ΛCDM模型中的空间曲率参数为Ωk=(1.8±1.9)×10-3 三个活动中微子质量的总和的上界是∑mν <0.16 eV(对于正常层次(NH))和∑mν <0.19 eV(对于反向层次(IH)),其中Δχ2≡χNH2-χIH2= -1.25。
2025-07-17 10:33:13 644KB Open Access
1
我们报告了使用多个探测器对中基线反应堆中微子实验进行的中微子质量等级(MH)测定,其中通过添加近探测器可以显着提高测量MH的灵敏度。 然后,深入研究了近探测器的基线和目标质量对组合MH灵敏度的影响。 对于目标质量为20 kton且基线为52.5 km的远距离探测器,近探测器的基线和目标质量的最佳选择分别为〜12.5 km和〜4 kton。 作为将来的中型基线反应堆中微子实验的典型示例,针对JUNO和RENO-50的特定配置选择了近探测器的最佳位置和目标质量。 最后,我们讨论了单探测器和双探测器设置中反应堆抗中微子能谱不确定性的不同影响,这表明在存在近探测器的情况下可以很好地限制光谱不确定性。
2025-07-17 08:37:21 1.36MB Open Access
1
ASP(Active Server Pages)是一种由微软开发的服务器端脚本环境,它允许Web开发者创建动态交互式的网页。在ASP中,你可以使用VBScript或JScript等脚本语言编写代码,这些代码在服务器上运行,然后将结果发送到客户端浏览器。在本案例中,"ASP+ACCESS自动记录访客"是指使用ASP技术结合ACCESS数据库来追踪和记录网站的访问者信息。 ACCESS是微软的桌面数据库管理系统,它提供了一个用户友好的图形界面来创建、管理数据库以及构建应用程序。在Web开发中,ACCESS常被用来存储和处理网站的数据,如用户信息、访问日志等。 自动记录访客系统的核心功能包括: 1. **访问统计**:系统会跟踪每个独立访问者的IP地址,这可以帮助分析网站的流量来源和分布。 2. **页面访问记录**:记录用户访问过的网页,以便了解哪些页面最受欢迎,从而优化网站内容。 3. **时间戳**:记录用户访问的时间,以分析访问频率和访问时段。 4. **用户行为分析**:通过跟踪用户在网站上的行为,如点击链接、填写表单等,可以评估用户体验和转化率。 5. **唯一标识符**:可能还会使用Cookie或其他技术为每个访问者分配唯一的标识,以便区分重复访问。 实现这个系统的步骤大致如下: 1. **数据库设计**:你需要在ACCESS中创建一个数据库,包含记录访客信息所需的字段,如访客ID、IP地址、访问时间、访问页面等。 2. **ASP脚本编写**:在ASP文件中,写入脚本来获取客户端的信息,如IP地址,通过Request对象。同时,需要编写代码来与ACCESS数据库交互,如插入新记录或更新已有的访客信息。 3. **事件触发**:每当有新的页面请求时,ASP脚本就会被触发,此时可以检查是否已有该访客的记录,如果没有,则添加一条新记录;如果已有记录,就更新相关信息。 4. **错误处理**:为了确保数据的完整性和系统的稳定性,还需要加入错误处理代码,以应对可能出现的数据库连接问题或无效输入。 5. **安全考虑**:由于涉及到用户数据,需要确保数据的安全性,防止SQL注入攻击。此外,应遵循隐私政策,只收集必要的访客信息,并告知用户这些信息的用途。 6. **数据分析**:可以通过报表或图表展示收集到的访客数据,以帮助理解网站的性能和用户行为。 这个系统对于小型网站来说是一个简单且实用的解决方案,可以提供基本的访问统计和用户行为分析。但对于大型或高流量网站,可能需要更强大、更专业的工具,如Google Analytics或其他第三方服务,以提供更复杂的数据分析和报告。
2025-07-17 08:33:39 634KB ASP+ACCESS
1
反应堆抗中微子的异常可以通过反应堆抗中微子向eV质量的无菌中微子的振荡来解释。 为了探究这一假设,STEREO实验测量了六个不同探测器电池中的抗中微子能谱,该探测器电池中的基线距离ILL研究堆的紧凑堆芯在9至11 m之间。 在这封信中,报告了反应堆开启66天和反应堆关闭138天的结果。 基于脉冲形状鉴别参数的分布,开发了一种提取抗中微子速率的新方法。 通过比较独立于绝对归一化和反应堆光谱预测的细胞比率,可以对无菌中微子进行新的振荡测试。 发现结果与零振荡假说是相容的,并且在97.5%C.L下排除了反应堆抗中微子异常的最佳拟合。
2025-07-16 21:39:34 456KB Open Access
1