提出了一种基于时频域特征的情绪检测方法。使用Box-and-whisker plot(箱线图)选择最佳特征,然后将其输入SVM分类器,用于训练和测试DEAP数据集,其中考虑了32名不同性别和年龄组的参与者。实验结果表明,该方法对测试数据集的准确率为92.36%。此外,所提出的方法比最先进的方法表现出更高的准确性。 本文利用DEAP数据集预处理的脑电信号对两种维度进行四分类,即效价和觉醒。首先通过应用FFT将数据集中的样本从时域转移到频域,然后提取对情绪识别特别重要的α、β和θ频带。随后,根据每个情绪对应的象限对提取的频带进行平均,并使用平均频带值提取统计特征。然后,对提取的特征进行缩放,并将各种特征组合输入支持向量机分类器(SVM)进行情感识别。据观察,我们的方法使用偏度、峰度和波熵特征预测情绪,准确率为92.36%。与现有的DEAP数据集方法相比,我们提出的模型显示了更好的结果。
有色金属-锂钴行业更新:情绪发酵,现货期货再次双跳涨.pdf
2022-04-06 02:43:21 2.26MB 资料
本科毕业设计python实时人脸情绪识别代码每行有注释
2022-04-06 00:24:12 78.63MB python 开发语言
微博情感可视化系统,杜贺,於志文,为了研究微博用户表达情感的特性,从个人化的情感表达和对社会性事件的态度反映两类文本出发,分别对个人情感变化以及热点事件中
2022-04-04 13:23:50 463KB 微博情绪
1
基于DEAP的四分类脑电情绪识别算法。 使用该模型从价-觉醒平面对四个情绪区域进行分类:高价-高觉醒(HVHA)、高价-低觉醒(HVLA)、低价-高觉醒(LVHA)和低价-低觉醒(LVLA)。 并提出了两种模型来解决这一问题:一维卷积神经网络(CNN-1D)结合LSTM,第二个模型为一维卷积神经网络(CNN-1D)结合GRU。 实验结果表明,该方法在1DCNN-GRU模型和1DCNN-LSTM模型中的训练准确率分别为96.3%和97.8%。因此,这两种模型对执行这种情绪分类任务都非常好。 这是专门为解决消失梯度问题而设计的,消失梯度问题通常成为时间序列数据集中的一个问题。
2022-03-29 09:33:31 1005KB 脑电情绪识别 deap cnn lstm
基于内容的电影推荐系统,使用AJAX进行情感分析 可以在以下位置找到此应用程序的更新版本: : 基于内容的推荐系统推荐与用户喜欢的电影相似的电影,并分析用户对该电影给出的评论的情绪。 电影的详细信息(标题,类型,放映时间,评分,海报等)是通过TMDB使用API​​, //www.themoviedb.org/documentation/api并使用电影中的IMDB ID来获取的。 API,我进行了网络抓取,以使用beautifulsoup4在IMDB站点中获得用户给出的评论,并对这些评论进行了情感分析。 查看现场演示: : 链接到youtube演示: : 注意 电影院 我已经开发了一个类似的应用程序,称为“电影院”,它支持所有语言的电影。 但是与此应用程序唯一不同的是,我在“电影院”中使用了TMDB的推荐引擎。 我在此应用程序中开发的推荐部分不支持多语言电影,因为它消耗了200%的RAM(即使将其部署到Heroku之后)也无法为TMDB中的所有700,000部电影生成Count Vectorizer矩阵。 链接到“电影院”应用程序: : 如果您要查找的电影
2022-03-16 03:00:41 2.71MB python nlp api machine-learning
1
Twitter情绪分析 这是一种自然语言处理问题,其中通过使用机器学习模型对消极消息中的消极消息进行归类来进行情感分析,以进行分类,文本挖掘,文本分析,数据分析和数据可视化 介绍 如今,自然语言处理(NLP)成为数据科学研究的温床,而NLP的最常见应用之一就是情感分析。 从民意测验到制定完整的营销策略,该领域已完全重塑了企业的运作方式,这就是为什么这是每个数据科学家都必须熟悉的领域。 与一组人手动完成相同任务所需的时间相比,可以在几秒钟内处理成千上万个文本文档的情感(以及其他功能,包括命名实体,主题,主题等)。 我们将按照解决一般情感分析问题所需的一系列步骤进行操作。 我们将从预处理和清理
1
Twitter股票交易员(NLP情绪分析) ( , ,( , 。 。 描述 此应用程序将基于用于情感分析的自然语言处理(NLP)算法实现股票的纸面交易。 应该注意的是,由于没有公司的其他情况,对公司使用推特React非常不稳定,并且在日内交易之外几乎没有用例。 该软件是按原样提供的,对于您因使用此程序而导致的任何后果,作者概不负责。 他们不对您因使用此程序尝试赚钱而愚蠢造成的损失负责,而不是对公司的财务记录进行尽职调查。 总览 该应用程序包含三个主要部分: 摄取引擎 接收引擎是应用程序的“前端”,可以持续运行,利用Twitter的从重要的股票金融服务获取最新更新,然后再将信息分批
2022-03-13 09:30:34 202KB nlp twitter sentiment-analysis stock-trading
1
内容包含了seed数据集与四份基于seed数据集的脑电情绪识别代码, 每一份代码都可以完整运行。 第一份是svm模型;第二份采用的pytorch框架,模型为svm和卷积神经网络(cnn)的混合模型。第三份是卷积神经网络(cnn)和循环神经网络(rnn)的混合模型。第四份是采用的机器学习算法,包含了五种机器学习常见的算法,例如决策树算法、朴素贝叶斯、K最近邻算法、随机森林算法等等。
本文调查了一系列英语和俄语社交和传统媒体中有关乌克兰Euromaidan抗议的在线对话中的情绪。 这项探索性研究的结果表明,在俄文来源(包括在俄文来源和使用者中)对Euromaidan抗议的支持比最初预期的要多。 鉴于西方国家政府对Euromaidan抗议活动的口头支持,包括美国和英国在内的英语国家的情绪比预期的更为消极。 但是,乌克兰,美国和英国的社交媒体内容比这些国家的传统媒体更为积极。
2022-03-09 13:57:44 2.29MB 论文研究
1