基于Simulink平台搭建的光伏储能虚拟同步发电机(VSG)仿真模型。该模型通过加入超级电容来稳定直流母线电压,利用VSG控制算法模拟传统同步电机特性,实现了光储联合系统的一次调频、削峰填谷等功能。文中提供了具体的MATLAB函数用于VSG控制、储能充放电管理以及光伏最大功率点跟踪(MPPT),并分享了实际测试中的关键参数调整经验。此外,还特别强调了三个重要波形的观测指标,确保系统稳定性和高效性。 适合人群:对新能源发电、电力电子、控制系统感兴趣的科研人员和技术开发者。 使用场景及目标:适用于研究和开发光储一体化系统,特别是希望深入了解VSG控制机制、储能优化策略以及光伏并网技术的研究者。目标是掌握如何构建高效的光储联合仿真模型,提高系统的灵活性和稳定性。 其他说明:文中提到的模型已在Matlab R2023a版本验证成功,推荐使用Parallel Computing Toolbox加速计算,并选择合适的求解器如ode23tb以应对电力电子设备带来的复杂动态行为。
2025-09-27 22:34:39 372KB
1
直流无刷电机(BLDC,Brushless Direct Current Motor)是一种广泛应用在各种机械设备和电子设备中的电动机,由于其高效、高可靠性和长寿命等特点,深受工程师们的青睐。MATLAB/Simulink是一款强大的数学计算和系统建模工具,其中的Simulink模块库可以用于构建直流无刷电机的控制系统仿真模型。 在MATLAB/Simulink中,无刷电机的仿真模型通常包括以下几个关键部分: 1. **电机模型**:这部分描述电机的物理特性,如电磁转矩与电流、电压的关系,以及电机的电气和机械动态响应。在Simulink中,可以使用Simscape Electrical的电机子库来构建这个模型,包含反电动势(back EMF)和磁链的计算。 2. **传感器模型**:无刷电机通常使用霍尔效应传感器或旋转变压器(编码器)来检测电机的位置。这些传感器的输出信号需要在模型中进行模拟,以便实现正确的换相逻辑。 3. **控制器模型**:BLDC电机的控制策略通常采用脉宽调制(PWM)和六步换相算法,通过改变供电相的顺序来控制电机的转动方向和速度。控制器模型包括PID控制器、状态机等,用于根据电机位置信号调整PWM占空比。 4. **电源模型**:电机驱动电路的模型,包括电压源、电流源、功率开关器件(如IGBT或MOSFET)及其驱动电路,以及可能的滤波电路,这些都在Simulink中用电气库的元件来表示。 5. **接口和反馈**:模型还需要包括输入/输出接口,如PWM信号的生成和接收,以及电机状态(速度、位置、电流)的反馈机制。 6. **Simpowersystems**:这是一个MATLAB/Simulink的扩展库,用于电力系统的建模,可以用来模拟电机与电网的交互,分析电源质量、效率等问题。 在提供的压缩包文件"fb53a362475746848ad0e4c1a16159aa"中,可能包含了上述各部分的模型文件。使用这些模型,工程师可以对无刷电机的控制策略进行设计、验证和优化,无需实际硬件就能预测电机的性能,降低实验成本,并有助于快速开发出满足特定需求的控制系统。 在实际仿真过程中,用户需要根据电机的具体参数(如额定电压、电流、转速等)以及控制目标(如速度控制、位置控制)调整模型的参数。通过仿真运行,观察电机性能指标的变化,可以评估控制器的性能,如有必要,还可以进行控制器参数的整定。 直流无刷电机MATLAB/Simulink仿真模型是一个综合性强、实践价值高的工具,它涵盖了电机理论、电力电子、控制理论等多个领域的知识,是电机控制领域的重要研究和教学手段。通过深入理解和应用这些模型,工程师可以更好地理解和掌握无刷电机的工作原理以及控制技术。
2025-09-27 22:32:47 1.93MB 直流无刷电机 simulink仿真 仿真模型
1
49.基于51单片机的光控小夜灯设计(仿真).pdf
2025-09-27 21:22:19 814KB
1
基于Matlab的无线充电仿真:LCC谐振器与不同拓扑的磁耦合谐振无线电能传输系统解析与建模,无线充电仿真 simulink 磁耦合谐振 无线电能传输 MCR WPT lcc ss llc拓扑补偿 基于matlab 一共四套模型: 1.llc谐振器实现12 24V恒压输出 带调频闭环控制 附参考和讲解视频 2.lcc-s拓扑磁耦合谐振实现恒压输出 附设计过程和介绍 3.lcc-p拓扑磁耦合谐振实现恒流输出 附设计过程 4.s-s拓扑补偿 带原理分析,仿真搭建讲解和参考,可依据讲解自行修改参数建模 四套打包 ,关键词:无线充电仿真;Simulink;磁耦合谐振;无线电能传输(WPT);MCR;LLC谐振器;LCC-S拓扑;LCC-P拓扑;调频闭环控制;设计过程;恒压输出;恒流输出;s-s拓扑补偿;Matlab。,基于Matlab的无线充电仿真模型:多拓扑磁耦合谐振无线电能传输系统研究
2025-09-27 13:53:52 352KB 开发语言
1
内容概要:本文围绕MATLAB在分布式能源系统中的应用,重点介绍了基于IEEE30节点的分布式能源选址与定容问题的建模与优化实现方法。通过结合智能优化算法(如PSO、NSGA-Ⅲ等)和电力系统仿真技术,对分布式电源的位置和容量进行协同优化,旨在提升配电网运行效率与电能质量。文中还提及多种相关技术扩展,包括微电网调度、负荷预测、网络动态重构等,并提供了完整的MATLAB代码实现支持,便于复现实验结果。; 适合人群:电气工程、能源系统及相关领域的科研人员,具备一定MATLAB编程基础和电力系统知识的研究生或工程师; 使用场景及目标:①解决分布式电源在配电网中的最优选址与定容问题;②开展微电网优化、配电网重构、多目标调度等研究;③复现EI期刊论文成果,支撑学术发表与项目开发; 阅读建议:建议结合提供的网盘资源下载完整代码,按照文档目录顺序逐步学习,重点关注算法实现与IEEE30节点模型的构建细节,配合仿真调试加深理解。
2025-09-27 11:49:19 10KB MATLAB 分布式能源 IEEE30节点
1
混沌系统是一类在确定性条件下表现出看似随机的、不可预测的动态行为的系统。自从20世纪60年代末,混沌理论开始作为一门独立的学科被广泛研究以来,混沌系统理论就在物理学、工程学、生物学、经济学和数学等领域展现出广泛的应用前景。混沌系统的研究涉及到非线性动力学的诸多方面,包括系统如何从稳定状态转变为混沌状态,混沌态的特征以及如何从混沌态中提取出有序的模式等等。 混沌系统的特点是其长期的不可预测性,即便系统遵循的规则是已知的,但由于系统的初始条件极其敏感,微小的变化都会导致截然不同的结果。这种现象被称为“蝴蝶效应”。因此,混沌系统很难通过传统的线性方法进行分析和预测。 在计算机辅助的数学研究中,MATLAB是一种广泛使用的数值计算和可视化软件,非常适合进行混沌系统的仿真研究。通过编写相应的MATLAB代码,可以模拟混沌系统的行为,生成吸引子图像,计算系统的分岔图以及Lyapunov指数等重要特征量,从而对混沌系统的行为进行深入分析。 给定的文件列表包含了多个不同的混沌系统仿真的MATLAB代码文件。例如,KSequ.m可能是对应于Kuramoto-Sivashinsky方程的仿真,该方程描述了某些物理系统中的波动现象。Lorenz.m文件则对应于著名的洛伦兹方程,这是一种最早被发现的混沌系统模型,由三个常微分方程组成,可以模拟大气对流过程中的非线性动力学行为。 Super_chen.m和Super_rossler.m这两个文件可能分别对应于扩展的Chen系统和扩展的Rossler系统,这些都是经典的混沌吸引子系统。Chua.m文件可能是指Chua电路的仿真代码,Chua电路是第一个被实验验证出混沌行为的电子电路。Rossler.m文件则对应于Rossler吸引子,这是一类三维连续动力系统,具有类似Lorenz系统但更简单的形式。Henon.m文件可能对应于Henon映射,这是一种二维离散映射,能够展现出混沌现象。 CGLE-Finite-Differences-Solver-master文件夹可能包含了复Ginzburg-Landau方程(CGLE)的有限差分求解器。CGLE是描述非线性波动在不稳定状态下的演化的偏微分方程,广泛应用于物理、化学、生物学等多个领域中波的传播与演化过程。 通过这些仿真代码,研究者能够直观地观察到混沌系统随时间演化的过程,分析其相空间中的轨道,以及系统对初始条件的敏感依赖性。此外,混沌系统中的分形结构,李雅普诺夫指数,以及混沌吸引子的拓扑特性等,都可以通过MATLAB仿真得到体现,这对于理解混沌系统的本质和提高对混沌现象的预测能力具有重要意义。 混沌系统理论的发展为科学和工程问题提供了一种新的视角和工具,它不仅帮助人们认识和理解自然界中的复杂现象,还在信号处理、信息安全、通信系统等方面找到了实际应用,成为推动现代科学技术进步的重要力量。
2025-09-26 22:55:10 236KB 混沌系统
1
内容概要:本文详细介绍了如何在COMSOL Multiphysics中进行纳米球和纳米柱的Mie散射多级分解仿真。首先强调了正确配置物理场和材料属性的重要性,如使用复数折射率描述金属损耗特性。接着讨论了Mie散射分解的核心步骤,包括选择合适的端口边界条件、确定多级分解的阶数以及优化网格划分。文中还提供了具体的MATLAB和Python代码片段,用于调用材料库、设置边界条件、执行多级分解和后处理结果。此外,作者分享了一些实践经验,如调整网格密度、处理各向异性结构和可视化高阶散射模式的方法。 适合人群:从事纳米光学研究的科研人员和技术开发者,尤其是对Mie散射理论及其仿真感兴趣的学者。 使用场景及目标:适用于需要模拟纳米颗粒与光相互作用的研究项目,帮助研究人员理解和预测纳米结构的散射特性,从而指导实验设计和数据分析。 其他说明:文中提到的技术细节和实践经验有助于提高仿真的准确性和效率,同时提供了丰富的代码示例供读者参考。
2025-09-26 21:14:56 4.88MB
1
文档支持目录章节跳转同时还支持阅读器左侧大纲显示和章节快速定位,文档内容完整、条理清晰。文档内所有文字、图表、函数、目录等元素均显示正常,无任何异常情况,敬请您放心查阅与使用。文档仅供学习参考,请勿用作商业用途。 你是否渴望高效解决复杂的数学计算、数据分析难题?MATLAB 就是你的得力助手!作为一款强大的技术计算软件,MATLAB 集数值分析、矩阵运算、信号处理等多功能于一身,广泛应用于工程、科学研究等众多领域。 其简洁直观的编程环境,让代码编写如同行云流水。丰富的函数库和工具箱,为你节省大量时间和精力。无论是新手入门,还是资深专家,都能借助 MATLAB 挖掘数据背后的价值,创新科技成果。别再犹豫,拥抱 MATLAB,开启你的科技探索之旅!
2025-09-26 19:20:47 4.64MB matlab
1
三相VIENNA整流器仿真(全网独一份) matlab仿真 T型vienna整流器仿真 双闭环PI控制,中点电位平衡控制,SPWM调制,三相锁相环。 图3为三相电流波形,图4THD为1.01%,电感仅为2mL。 图4直流侧电压波形,能准确跟踪给定值750V,图5为直流母线侧上下电容电压,中点电位波动极小。 功率因数为99%以上。 三相VIENNA整流器仿真是一种电力电子设备仿真技术,其特点是具有高性能的电能转换能力。VIENNA整流器在电子技术中扮演着重要的角色,特别是在工业应用中,它对提高能效和减少对电网的污染起着至关重要的作用。本文将从几个方面深入探讨三相VIENNA整流器仿真的工作原理、性能特点以及在电子技术中的应用价值。 三相VIENNA整流器仿真在模拟和优化整流器性能方面具有独特优势。仿真可以帮助工程师在设计阶段预测和评估整流器的性能,包括其在不同负载和操作条件下的效率、稳定性以及电磁兼容性。仿真技术可以提前发现设计缺陷,减少实际制造和测试阶段的时间和成本。 在本案例中,三相VIENNA整流器采用了双闭环PI控制策略。PI控制,即比例-积分控制,是一种常见的反馈控制方法。通过调节比例增益和积分增益,控制系统可以快速响应负载变化,保证输出电压和电流的稳定性。双闭环PI控制意味着系统内部有两个闭环反馈回路,分别控制电流和电压,这使得整流器能够在变化的工况下保持更稳定的输出性能。 此外,整流器还包括了中点电位平衡控制。在三相VIENNA整流器中,中点电位的稳定性对整个系统的安全运行至关重要。由于不平衡的负载或者制造误差,中点电位可能出现偏差,这会导致电容电压的不均衡,进而影响整流器的正常工作。因此,中点电位平衡控制能够实时监测和调整中点电位,确保系统的稳定运行。 SPWM(正弦脉宽调制)调制是另一种关键技术。它通过调整开关器件的开关频率和占空比,将正弦波电压转换为脉冲宽度调制的波形,从而有效地控制交流侧和直流侧的能量传递。SPWM调制技术可以显著降低输出电流的谐波含量,提高整流器的电能质量。 为了进一步提升性能,三相VIENNA整流器还配置了三相锁相环。锁相环是电子系统中用于实现相位同步的电路或算法,它能够确保输出电压的频率和相位与输入电压同步,这对于提高整流器的动态响应和稳定性能至关重要。 从给出的仿真结果来看,图3中展示的三相电流波形表明电流波形接近正弦波,而且谐波失真度(THD)仅为1.01%,说明整流器具有良好的电流谐波抑制能力。电感的大小仅为2mH,这表明该仿真模型采用了小型化的电感设计,有助于缩小整流器的体积和重量。 直流侧电压波形能够准确跟踪给定值750V,说明整流器具备良好的电压稳定性。图5展示了直流母线侧上下电容电压,中点电位波动极小,这一特性对于提高整个系统的稳定性和可靠性具有重要意义。此外,功率因数高达99%以上,这说明整流器能够在提供有效功率的同时,大大减少无功功率的损耗,从而提升能源的利用效率。 三相VIENNA整流器仿真不仅展现出优异的性能指标,还具备了高度的控制灵活性和优化潜力。通过深入分析仿真结果,我们能够了解到该仿真模型在电能转换和管理方面的巨大优势。它不仅为工程师提供了一个强大的设计和测试平台,也展示了当前电力电子技术的最新进展。
2025-09-26 16:19:17 610KB gulp
1
梯形图转HEX 51plc方案5.6.4.2版本,低成本plc方案,支持温湿度传感器,支持ds18b20.,支持无线联网,支持数码管按钮,最近发现软件在个别系统运行不良,(w764位95%可以用) 梯形图转HEX技术是一种编程方法,其将梯形图转换为HEX格式的代码,以便在51系列的PLC(可编程逻辑控制器)上运行。51系列PLC因其成本低廉、性能可靠而广泛应用于工业自动化领域。5.6.4.2版本的梯形图转HEX方案进一步优化了功能,特别在支持温湿度传感器方面表现突出。温湿度传感器被广泛用于环境监测中,它能实时监测环境的温度和湿度变化,对于保持工业环境或农业环境中的稳定性至关重要。ds18b20是一种常用的数字温度传感器,以其高精度和易用性而受到青睐。该方案还支持无线联网,这意味着PLC可以通过无线网络与其他设备或系统进行通信,进一步增强了系统的灵活性和远程控制能力。 此外,方案还提供了对数码管按钮的支持,这在工业界是一种常见的用户交互方式,尤其适用于需要在恶劣环境下使用的设备。尽管此方案在大多数系统中表现良好,但在某些特定的操作系统(如Windows 7 64位)中存在兼容性问题,不过根据描述,大部分情况下仍然可以使用。 从文件列表中可以看出,该方案不仅提供技术支持,还包括相关技术文档和博客,内容覆盖了梯形图转HEX技术在实际应用中的测量软件、功能分析、实践挑战以及发展展望。这些文档和博客有助于工程师和开发者更深入地理解该技术的应用场景和挑战,以及如何在不同情况下应用这一方案。 梯形图转HEX 51plc方案5.6.4.2版本为低成本工业自动化提供了一套功能完备的解决方案。它不仅支持基础的输入输出控制,还通过集成先进的传感器和无线网络技术,大大提高了工业控制系统的灵活性和智能性。尽管在某些系统中存在兼容性问题,但这并不影响其作为一个高效、实用的解决方案在市场上的竞争力。
2025-09-26 08:20:53 187KB
1