采用粒子群优化算法(pso)优化LSTM回归预测,全中文注释,内置数据集,可以直接在MATLAB2019上直接运行。
2022-04-16 09:07:26 766KB 回归 lstm 算法 数据挖掘
粒子群算法及其改进,在原有粒子群算法基础上进行改进,增加免疫算法,使其尽快跳出早熟,收敛更快,结果更优!(Particle swarm optimization (PSO) and its improvement are improved on the basis of the existing particle swarm algorithm, and the immune algorithm is added to make it jump out of premature, faster convergence and better results)
2022-04-10 16:05:29 541KB matlab 算法 开发语言
针对标准粒子群算法在优化过程中受初始值影响较大且容易陷入局部极值的缺陷,将鱼群算法中聚群行为的基本思想引入粒子群算法中,据此建立了粒子中心的基本概念,并利用粒子的聚群特性调整粒子的飞行方向与目标位置,从而提出了一种新的混合粒子群算法,旨在改进原粒子群算法的全局收敛能力。为了检验混合粒子群算法的优化特性,采用三种典型的标准函数对五种现行智能算法进行了多方面的测试和比较。实验结果表明,新算法具有良好的搜索精度与速度,有效弥补了标准粒子群算法局部收敛和鱼群算法精度不高的双重缺陷,适用于解决复杂函数优化问题。
1
粒子群优化算法流程图 开始 初始化粒子群 计算每个粒子的适应度 根据适应度更新pbest、gbest,更新粒子位置速度 结束 no yes 达到最大迭代次数或 全局最优位置满足最小界限?
2022-04-04 21:35:48 2.62MB 粒子群优化 算法 解析
1
基本的粒子群优化算法PSO的Matlab实现代码,很实用的呢
2022-03-31 20:12:05 6KB 粒子群 PSO Matlab代码
1
一种电磁优化算法,解决稀疏天线阵的方向图综合问题
2022-03-31 13:20:16 621KB 优化 粒子群
1
原型: [xopt, fval, exitflag, output] = ppso(func,npars,lb,ub) 或[xopt, fval, exitflag, output] = ppso(func,npars,lb,ub,options) 或[xopt, fval, exitflag, output] = ppso(func,npars,lb,ub,options,auxdata) 描述: 使用全局版本的粒子群优化算法查找函数的最小值,如参考文献中所述。 1. 认知权重和社会权重的值分别为 cC = 1.49445*r2(0,1) 和 cS = 1.49445*r3(0,1) 其中 r2(0,1) 和 r3(0,1) 为两个在 0 和 1 之间均匀分布的随机数。惯性权重为 cI = 0.5 + 0.5*r1(0,1)。 已经测试了惯性权重的递减版本,但它导致整个算法在速度和最终
2022-03-29 14:04:26 172KB matlab
1
惯性权重 1998年,Shi和Eberhart引入了惯性权重w,并提出动态调整惯性权重以平衡收敛的全局性和收敛速度,该算法被称为标准PSO算法 惯性权重w描述粒子上一代速度对当前代速度的影响。w值较大,全局寻优能力强,局部寻优能力弱;反之,则局部寻优能力强。当问题空间较大时,为了在搜索速度和搜索精度之间达到平衡,通常做法是使算法在前期有较高的全局搜索能力以得到合适的种子,而在后期有较高的局部搜索能力以提高收敛精度。所以w不宜为一个固定的常数。
2022-03-27 16:51:12 2.62MB 粒子群优化 算法 解析
1
这是一个关于多目标粒子群算法,很有用,代码通用性强
2022-03-24 13:14:34 4KB 多目标 粒子群
1
解决最优化问题的方法 传统搜索方法 保证能找到最优解 Heuristic Search 不能保证找到最优解
2022-03-15 15:36:37 2.62MB 粒子群优化 算法 解析
1