VGG16cfg和训练权重
2023-04-02 17:14:20 489.89MB VGG16预训练模型
1
yolov5_4.0-pytorch训练模型yolov5l.pt、yolov5m.pt、yolov5s.pt、yolov5x.pt
2023-03-31 23:59:08 289.86MB YOLOV5_4.0 pytorch yolov5s.pt
1
阿尔伯特-TF2.0 使用TF2.0的ALBERT模型微调 该存储库包含针对ALBERT的TensorFlow 2.0实现。 要求 python3 点安装-r requirements.txt ALBERT训练 从零开始的ALBERT模型训练和特定于域的微调。 说明 下载ALBERT TF 2.0砝码 Verison 1 版本2 将模型解压缩到存储库中。 以上重量不包含原始模型中的最后一层。 现在只能用于微调下游任务。 从TF-HUB到TF 2.0全权转换 下载胶水数据 使用以下cmd下载 python download_glue_data.py --data_dir glue_data --tasks all 微调 要准备用于最终模型训练的微调数据,请使用脚本。 tf_record格式的结果数据集和训练元数据应稍后传递给训练或评估脚本。 特定于任务的参数将在以下各节中介绍:
2023-03-28 13:58:27 183KB classifier glue tf2 mlm
1
YOLO检测,训练自己的模型必备的训练权重文件~官网太难下载了。。。当时慢得我想哭,当然,程序跑起来的喜悦也是无与伦比的。
2023-03-26 01:26:26 144.37MB YOLO预训练 初始卷积权重
1
Place365GoogLeNet 是在 Places365 数据集上训练的训练模型,其底层网络架构与在 ImageNet 数据集上训练的 GoogLeNet 相同。 您可以使用网络阅读 句法净= googlenet net = googlenet('权重',权重) net = googlenet('Weights',weights) 返回在 ImageNet 或 Places365 数据集上训练的 GoogLeNet 网络。 如果权重等于“imagenet”,则网络具有在 ImageNet 数据集上训练的权重。 如果权重等于“places365”,则网络具有在 Places365 数据集上训练的权重。 从您的操作系统或 MATLAB 中打开 place365googlenet.mlpkginstall 文件将启动您拥有的版本的安装过程。 此 mlpkginstall 文件适用
2023-03-25 14:42:22 6KB matlab
1
captureone11的设,我觉得可以一试。。。。。。。。。
2023-03-23 11:46:47 3.37MB 图片调色
1
在本文中,我们考虑了为连续时间非线性系统开发控制器的问题,其中控制该系统的方程式未知。 利用这些测量结果,提出了两个新的在线方案,这些方案通过两个基于自适应动态编程(ADP)的新实现方案来合成控制器,而无需为系统构建或假设系统模型。 为了避免对系统的先验知识的需求,引入了补偿器以构造增强系统。 通过自适应动态规划求解相应的Hamilton-Jacobi-Bellman(HJB)方程,该方程由最小二乘技术,神经网络逼近器和策略迭代(PI)算法组成。 我们方法的主要思想是通过最小二乘技术对状态,状态导数和输入信息进行采样以更新神经网络的权重。 更新过程是在PI框架中实现的。 本文提出了两种新的实现方案。 最后,给出了几个例子来说明我们的方案的有效性。 (C)2014 ISA。 由Elsevier Ltd.出版。保留所有权利。
2023-03-21 17:45:57 901KB Model-free controller; Optimal control;
1
Spleeter是Deezer源代码分离库,其中包含使用Python编写并使用Tensorflow进行训练的模型。 它使训练音乐源分离模型(假设您具有隔离的源的数据集)变得容易,并提供了经过训练的最先进模型来执行各种分离风格。 2个茎和4个茎模型在musdb数据集上具有最先进的性能。 Spleeter也非常快,因为它可以在GPU上运行时将音频文件分离为4个茎,比实时快100倍。 我们设计了Spleeter,因此您可以直接在命令行中使用它,也可以在自己的开发管道中直接使用它作为Python库。 它可以通过Conda与pip一起安装,也可以与Docker一起使用。
2023-03-11 11:47:01 205.66MB 开源软件
1
针对一类具有死区的非仿射非线性系统,将设性能控制与有限时间控制相结合,提出一种具有设性能的自适应有限时间跟踪控制方法.基于Backstepping技术、模糊逻辑系统及有限时间Lyapunov稳定理论,给出使系统半全局实际有限时间稳定(semi-globally practically finite-time stable,SGPFS)的充分条件和设计步骤.该控制策略不仅使系统的输出误差在有限时间内收敛到一个先设定区域,同时保证其收敛速度、最大超调量和稳态误差均满足先设定的性能要求.最后通过仿真示例验证了所提出设计方法的有效性.
1
MobileNetV3的PyTorch实现这是MobileNetV3架构的PyTorch实现,如论文Searching MobileNetV3中所述。 一些细节可能与原始论文有所不同,欢迎讨论MobileNetV3的PyTorch实现。这是论文Searching MobileNetV3中描述的MobileNetV3体系结构的PyTorch实现。 一些细节可能与原始论文有所不同,欢迎讨论并帮助我解决。 [NEW]小版本mobilenet-v3的训练模型在线,准确性达到与纸张相同的水平。 [NEW]该文件于5月17日更新,因此我为此更新了代码,但仍然存在一些错误。 [NEW]我在全局AV之前删除了SE
2023-03-03 20:17:12 8KB Python Deep Learning
1