行人跟踪使用LiDAR传感器 客观的 利用来自LIDAR测量的传感器数据进行卡尔曼滤波器的行人跟踪。 状态预测 x'= Fx +ν方程为我们进行了这些预测计算。 过程噪声是指预测步骤中的不确定性。 我们假设物体以恒定的速度行进,但实际上,物体可能会加速或减速。 ν〜N(0,Q)符号将过程噪声定义为均值为零且协方差为Q的高斯分布。 当我们在一秒钟后预测位置时,不确定性就会增加。 P'= FPFT + Q表示不确定性的增加。 因为我们的状态向量仅跟踪位置和速度,所以我们将加速度建模为随机噪声。 Q矩阵包含时间Δt,以说明随着时间的流逝,我们对位置和速度的不确定性越来越大。 因此,随着Δt的增加,我们向状态协方差矩阵P添加更多不确定性。 结合先前推导的2D位置和2D速度方程式,我们得到: 由于加速度是未知的,因此我们可以将其添加到噪声分量中,并且该随机噪声将被解析地表示为上面得出的方程
2021-11-13 20:44:07 6KB C++
1
用于微机械捷联式航姿系统的四元素算法卡尔曼滤波器_英文_定义.pdf
2021-11-13 09:08:47 190KB
Battery_SOC_Estimation:在Matlab中使用卡尔曼滤波器估算电池的充电状态
2021-11-09 18:23:34 1.06MB battery simulation matlab ekf
1
基于扩展卡尔曼滤波器的超紧耦合GPS/INS组合导航系统设计(中国知网上下的哦)
2021-11-09 13:14:26 256KB 扩展卡尔曼滤波 紧耦合 GPS/INS
1
卡尔曼卢阿 卡尔曼滤波器类 (lua) 这是一个简单的卡尔曼滤波器,可以使用噪声值 (R) 进行实例化。
2021-11-08 16:16:15 69KB Lua
1
基于扩展卡尔曼滤波和加权非线性最小二乘的二维同时定位与映射仿真 蓝色圆圈是机器人的真实姿势,红色圆圈是机器人的估计姿势 两个蓝星是特征的实际位置,两个红星是特征的估计位置 介绍 在Matlab中模拟具有两个要素和一个绕要素1旋转的机器人的2D地图。 (机器人可以观察到两个特征相对于自身的角度和距离)。 使用观察数据和控制数据分别基于扩展卡尔曼滤波器(EKF)和加权非线性最小二乘法(WNLS)来估计机器人的姿态和两个特征的位置(即通过EKF和WNLP解决简单的2D SLAM )。 (SLAM):是在构建或更新未知环境的地图同时跟踪代理在其中的位置的计算问题。 先决条件 所有代码仅在 视窗10 1809 Matlab R2018b 不能保证这些代码在其他版本中具有良好的兼容性。 用法 双击F00_Main_EKF.m以运行基于EKF的2D SLAM仿真。 双击F00_Main_NL
2021-11-08 07:48:13 164KB slam ekf wnls MATLAB
1
这个包实现了一系列鲁棒卡尔曼滤波器。 每个鲁棒卡尔曼滤波器都是通过固定参数 tau(0 和 1 之间的实际值)来选择的。 滤波器的鲁棒性由容差 c 调整。 鲁棒鲁棒卡尔曼的设计知道真实模型属于一个关于名义上的球。 那个球里的模型是这样的它们与名义模型之间的 Tau 散度小于宽容 C. 该软件包还包含一个演示其实际应用的示例。 参考: M.佐尔齐。 “模型扰动下的鲁棒卡尔曼滤波”。 提交。 M.佐尔齐。 “关于模型不确定性下贝叶斯和维纳估计量的鲁棒性”。
2021-11-05 16:15:09 6KB matlab
1
卡尔曼滤波器源文件,可以作为MATLAB的工具包使用
2021-11-05 14:59:10 248KB 卡尔曼滤波器
1
学习卡尔曼非常好的一篇文章,深入浅出的介绍了卡尔曼的概况和应用。非常值得一读。
2021-11-04 10:10:32 437KB kalmen filter
1
在本文中,我们描述了代表霍乱动力学的两个不同的随机微分方程。 通过将随机性引入随机性建模中的一种标准技术-参数摄动技术,将随机性引入确定性模型中,从而编制出第一条随机微分方程;并使用转移概率来编制第二条随机微分方程。 我们使用合适的Lyapunov函数和Itô公式分析随机模型。 我们陈述并证明了整体存在的条件,正解的唯一性,随机有界性,概率的整体稳定性,矩指数稳定性和几乎确定的收敛性。 我们还使用Euler-Maruyama方案进行了数值模拟,以模拟随机微分方程的样本路径。 我们的结果表明,样本路径是连续的,但不可区分(维纳过程的一个属性)。 此外,我们比较了确定性模型和随机模型的数值模拟结果。 我们发现,SIsIaR-B随机微分方程模型的样本路径在SIsIaR-B常微分方程模型的解内波动。 此外,我们使用扩展的卡尔曼滤波器来估计模型区室(状态),我们发现状态估计值适合测量结果。 还讨论了用于估计模型参数的最大似然估计方法。
1