主要内容:本文详细介绍了在MATLAB环境中通过鲸鱼优化算法(WOA)来优化卷积长短期记忆网络(CNN-LSTM)以实现高效的数据分类与预测的方法。项目不仅提供了理论概述和设计思路,还包含了完整代码及合成数据样本。涵盖了从基础知识到模型优化的设计流程。 适合人群:对于深度学习及机器学习感兴趣的研究员和工程师。 使用场景及目标:适用于各种类型数据的分类及预处理,在需要进行复杂数据集处理的情况下能提供更好的预测效果。 其他说明:文中给出了详细的设计指导和具体的执行脚本,方便读者理解和实践。同时,项目允许在特定应用场景下定制和调参,增强了方法的实用性。
2024-11-18 17:13:49 37KB 鲸鱼算法 MATLAB环境
1
安卓期末大作业-垃圾分类助手(免积分下载) 压缩包内包含源代码,项目文档,apk文件,运行各个界面截图。app使用的是sqlite数据库,使用的核心类及其组件:Base Adapter,Fragment,View Pager,Alert Dialog.Builder,Option,Animation Draw able(关键帧动画),Media Player(视频),Count Down Timer(倒计时 广告页用),Spinner等 该分类助手的功能是管理员先登录进入后台界面,将数据录入数据库,管理员可进行增删改查操作,用户可在前台页面通过垃圾分类查垃圾也可通过垃圾查分类,可以浏览后台管理员录到数据库中的新闻。 该分类助手在上传头像时是通过跳转到手机图库选择照片,然后保存的时候是通过该图片的uri录入数据库,显示图片则是从数据库读取uri并显示。 以上所述功能均实现正常 详见 https://blog.csdn.net/weixin_59538558/article/details/131029604
2024-11-09 19:00:05 55.02MB android
1
句子分类 该项目的目标是根据类型对句子进行分类: 陈述(陈述句) 问题(疑问句) 感叹号(感叹句) 命令(命令句) 以上每个广泛的句子类别都可以扩展,并且可以进行更深入的介绍。 这些网络和脚本的设计方式应该可以扩展,以对其他句子类型进行分类(如果提供了数据)。 它是为在应用开发的,并在上随附了有关构建实用/应用的神经网络的。 请随意添加PR,以自由更新,改进和使用! 安装 如果您有GPU,请安装CUDA和CuDNN(在您选择的系统上) 安装要求(在python 3上,python 2.x无效) pip3 install -r requirements.txt --user 执行: 预训练模型: python3 sentence_cnn_save.py models/cnn 要建立自己的模型: python3 sentence_cnn_save.py models/
2024-10-20 17:03:31 23.04MB neural-network fasttext
1
人工智能(Artificial Intelligence,简称AI)是一种前沿的计算机科学技术,其核心目标是通过模拟、延伸和拓展人类智能来构建智能机器与系统。它融合了计算机科学、数学、统计学、心理学、神经科学等多个学科的知识,并利用深度学习、机器学习等算法,使计算机能够从数据中学习、理解和推断。 在实际应用中,人工智能体现在诸多领域:如机器人技术,其中机器人不仅能执行预设任务,还能通过感知环境自主决策;语言识别和语音助手技术,如Siri或小爱同学,它们能理解并回应用户的语音指令;图像识别技术,在安防监控、自动驾驶等领域实现对视觉信息的精准分析;自然语言处理技术,应用于搜索引擎、智能客服及社交媒体的情感分析等。 此外,专家系统能够在特定领域提供专业级建议,物联网中的智能设备借助AI优化资源分配与操作效率。人工智能的发展不断改变着我们的生活方式,从工作场景到日常生活,智能化正以前所未有的方式提升生产力、便捷性和生活质量,同时也在挑战伦理边界与社会规则,促使我们重新审视人与技术的关系及其长远影响。
2024-10-19 19:09:31 4.15MB 人工智能 ai python
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-10-17 19:14:22 7.65MB matlab
1
艾科瑞特科技:计算机视觉-通用版垃圾分类图像分类(265种类别) 关键词:目标检测、目标跟踪、图像识别、图像分类、自然语言处理、自然语言分析、计算机视觉、人工智能、AIGC、AI、大模型、多模态大模型、API、Docker、镜像、API市场、云市场、国产软件、信创 内容摘要: 基于265类生活垃圾标签体系和15万张图片数据的垃圾分类图像分类模型,具有广泛的应用场景。 居民小区垃圾分类指导:提供实时图像识别与分类建议。 公共场所垃圾投放指引:协助公众正确分类投放垃圾。 环卫工人垃圾收集辅助:快速识别与分拣不同种类垃圾。 城市管理部门垃圾监管:利用图像识别进行垃圾分类情况分析。 教育机构环保教学:利用垃圾分类图像进行科普教育。 社区宣传活动:展示不同垃圾种类的识别与分类方法。 垃圾处理厂分拣系统:自动化识别与分类垃圾,提高处理效率。 垃圾分类APP开发:为用户提供垃圾分类查询与指导服务。 垃圾分类竞赛与游戏:通过图像识别技术增强娱乐与教育性。 回收站点垃圾收集:精确分类回收各类可回收垃圾。 家庭垃圾分类助手:帮助家庭成员正确分类生活垃圾。 餐饮行业垃圾分类管理:确保厨余垃圾得到妥善处理。
2024-10-17 12:35:08 1.32MB 计算机视觉
1
CNN-LSTM-Attention分类,基于卷积神经网络-长短期记忆网络结合注意力机制(CNN-LSTM-Attention)分类预测 MATLAB语言(要求2020版本以上) 中文注释清楚 非常适合科研小白,替数据集就可以直接使用 多特征输入单输出的二分类及多分类模型。 预测结果图像:迭代优化图,混淆矩阵图等图如下所示
2024-10-10 09:56:10 191KB
1
HypeLCNN概述 该存储库包含论文“具有用于高光谱和激光雷达传感器数据的光谱和空间特征融合层的深度学习分类框架”的论文源代码(正在审查中) 使用Tensorflow 1.x开发(在1.10至1.15版上测试)。 该存储库包括一套完整的套件,用于基于神经网络的高光谱和激光雷达分类。 主要特点: 支持超参数估计 基于插件的神经网络实现(通过NNModel接口) 基于插件的数据集集成(通过DataLoader接口) 培训的数据有效实现(基于内存的有效/基于内存/记录的) 能够在经典机器学习方法中使用数据集集成 神经网络的培训,分类和指标集成 胶囊网络和神经网络的示例实现 基于CPU / GPU / TPU(进行中)的培训 基于GAN的数据增强器集成 交叉折叠验证支持 源代码可用于在训练大数据集中应用张量流,集成指标,合并两个不同的神经网络以进行数据增强的最佳实践 注意:数据集文件太
2024-10-09 21:46:44 128KB deep-neural-networks tensorflow fusion lidar
1
在遥感领域,数据集是研究和开发的关键资源,它们为模型训练、验证和测试提供了必要的数据。"高光谱和LiDAR多模态遥感图像分类数据集"是这样一种专门针对遥感图像处理的宝贵资源,它结合了两种不同类型的数据——高光谱图像和LiDAR(Light Detection and Ranging)数据,以实现更精确的图像分类。 高光谱图像,也称为光谱成像,是一种捕捉和记录物体反射或发射的光谱信息的技术。这种技术能够提供数百个连续的光谱波段,每个波段对应一个窄的电磁谱段。通过分析这些波段,我们可以获取物体的详细化学和物理特性,例如植被健康、土壤类型、水体污染等,这对环境监测、城市规划、农业管理等有着重要的应用。 LiDAR则是一种主动遥感技术,它通过向地面发射激光脉冲并测量回波时间来计算目标的距离。LiDAR数据可以生成高精度的地形模型,包括地表特征如建筑物、树木和地形起伏。此外,LiDAR还能穿透植被,揭示地表覆盖下的特征,如地基和地下结构。 这个数据集包含了三个不同的地区:Houston2013、Trento和MUUFL。每个地区可能对应不同的地理环境和应用场景,这为研究者提供了多样性的数据,以便他们在不同条件和场景下测试和比较分类算法的效果。 数据集的分类任务通常涉及识别图像中的各种地物类别,如建筑、水体、植被、道路等。多模态数据结合可以显著提升分类的准确性,因为高光谱数据提供了丰富的光谱信息,而LiDAR数据则提供了高度精确的空间信息。将这两者结合起来,可以形成一个强大的特征空间,帮助区分相似的地物类别,减少分类错误。 在实际应用中,这个数据集可以用于训练深度学习或机器学习模型,比如卷积神经网络(CNN)。通过在这样的多模态数据上训练,模型能够学习到如何综合解析光谱和空间信息,从而提高对遥感图像的分类能力。对于研究人员和开发者来说,这个数据集提供了理想的平台,用于开发新的图像分析技术,改进现有算法,并推动遥感图像处理领域的创新。 "高光谱和LiDAR多模态遥感图像分类数据集"是一个涵盖了多种地理环境和两种互补遥感技术的宝贵资源,对于理解地物特性、提升遥感图像分类精度以及推动遥感技术的发展具有重大价值。通过深入研究和利用这个数据集,我们可以期待在未来实现更加智能化和精确化的地球表面监测。
2024-10-09 21:43:16 185.02MB 数据集
1
PDF已分类 可直接搜索!!!PDF已分类 可直接搜索!!! 现在越来越多的外资企业(包括若干投行、商业银行、industry的MT program等)已经把 笔试(online test或者现场笔试)纳入应聘程序,其中很多公司的test用题源于一家名为 SHL的机构。偶曾经参加过一些投行(UBS,ML, HSBC IB),HSBC BDP program, 渣打等笔试 ,积累了一定的经验(感觉总体来说投行online test难度相对较高,其他稍低),借此机 会和大家分享一下,希望从来没有接触过这种类型test的同学能对此有个感性认识,也希 望参加过该类test的同学能获得有用的信息,结合自己的特点加以改进。 SHL类型test的一般分两部分,numerical test和verbal test。
2024-09-24 21:03:31 4.71MB SHL测评
1