本文的目的在于告诉大家如何简化隔离系统设计,文章除描述电容式数字隔离器的基本功能,详细介绍如何在信号通路中安装隔离器外,还就如成功设计电路板提供了一些有价值的参考意见。
1
AD 电感封装文件 含3D。包含有CD封装,共模电感,常用插件等。
2024-03-14 11:30:39 17.59MB 电感封装 Altium
1
上拉就是将不确定的信号通过一个电阻钳位在高电平,电阻同时起限流作用。下拉同理。也是将不确定的信号通过一个电阻钳位在低电平。
2024-03-13 00:20:07 78KB 上拉电阻 下拉电阻 模拟电路
1
基于stm32单片机PT100铂电阻温度采集系统(程序+原理图+全套资料)
2024-03-07 23:09:42 18.09MB
1
数字电阻 MCP4105,纯C代码,STM32直接使用,其他单片机也可以修改使用。拿走不谢!!!
2024-03-05 17:57:52 2KB MCP4105 STM32 数字电阻 可调电阻
1
磁珠(Bead)_电感(L)_电阻(R)_电容(C)于噪声抑制上的相关剖析与探讨
2024-03-05 15:51:24 7.33MB 噪声抑制
1
日常生活中,可以看到变压台上的变压器,和我们家用电子设备不一样,但是同样作为变压的电子元器件,为什么高频变压器用的是铁氧体磁芯,而变压台上的变压器却用的硅钢片呢? 硅钢是一种合硅的钢,其含硅量在0.8~4.8%。由硅钢做变压器的铁芯,是因为硅钢本身是一种导磁能力很强的磁性物质,在通电线圈中,它可以产生较大的磁感应强度,从而可以使变压器的体积缩小。常用的变压器铁芯一般都是用硅钢片制做的。 我们知道,实际的变压器总是在交流状态下工作,功率损耗不仅在线圈的电阻上,也产生在交变电流磁化下的铁芯中。通常把铁芯中的功率损耗叫“铁损”,铁损由两个原因造成,一个是“磁滞损耗”,一个是“涡流损耗”。 金籁科技高频变压器 磁滞损耗是铁芯在磁化过程中,由于存在磁滞现象而产生的铁损,这种损耗的大小与材料的磁滞回线所包围的面积大小成正比。硅钢的磁滞回线狭小,用它做变压器的铁芯磁滞损耗较小,可使其发热程度大大减小。 既然硅钢有上述优点,为什么不用整块的硅钢做铁芯,还要把它加工成片状呢? 这是因为片状铁芯可以减小另外一种铁损──“涡流损耗”。变压器工作时,线圈中有交变电流,它产生的磁通当然是交变的。
2024-03-03 09:59:25 178KB 金籁科技 一体成型电感 贴片电感
1
很多应用都需要差分信号,以获得较高的信噪比,提高对共模噪声的抑制能力,并获得较低的二次谐波失真,例如驱动调制解调器ADC、通过双绞线电缆传输信号,以及高保真音频信号的调整等。这就要求有一种可以将单端信号转换为差分信号的电路,即单端-差分转换器。 对很多应用而言,AD8476内置的小功率全差分精密放大器就足够完成单端-差分的转换功能。但对于需要更高性能的应用,可以将一只OP1177精密运放与AD8476相级联,如图所示。这种单端-差分转换器有高的输入阻抗、(最大)2nA输入偏移电流及相对输入端的(最大)60μV偏移电压和(最大)0.7μV/℃电压偏移。 图1 : 调节R F与R G的比值,就可以设定这个单端-差分转换器。 图1中电路是一种双放大器反馈结构,其中运放决定了电路的精度以及噪声性能,而差分放大器则扮演了单端-差分转换功能。这个反馈结构抑制了AD8476的误差,包括噪声、失真、偏移、漂移,它用运放的大开环增益替代了AD8476内部的运放反馈回路。本质上,这个结构是采用运放针对输入端的开环增益,衰减了AD8476的误差。 图中的外接电阻R F和R G设定单端-差分放大器
2024-03-02 10:27:13 104KB 单端信号 差分转换器 基础知识
1
表贴电感直插电感共模电感2D3D三维视图PCB封装库AD库大全(84个) Component Count : 64 Component Name ----------------------------------------------- CD31 CD32 CD42 CD43 CD52 CD53 CD54 CD73 CD75 CD104 CD105 CD106 CDRH73 CDRH74 CDRH124 CDRH125 CDRH127 CDRH129 L-SMD-0630 L0402 L0603 L0805 L1206 L1210 L1806 L1812 LMR135 NR2520 NR3010 NR3012 NR3015 NR4010 NR4018 NR4020 NR4026 NR4030 NR5012 NR5020 NR5040 NR6020 NR6028 NR6045 NR8040 SWPA3010 SWPA3012 SWPA3015 SWPA4010 SWPA4012 SWPA4018 SWPA4020 SWPA4026 SWPA4030 SWPA5012 SWPA5020 SWPA5040 SWPA6020 SWPA6028 SWPA6040 SWPA6045 SWPA8040 SWPA8050 SWPA8065 SWPA252010 SWPA252012 Component Count : 20 Component Name ----------------------------------------------- AL0204 AL0204_V AL0307 AL0307_V AL0410 AL0410_V AL0510 AL0510_V CMC_12x6x4 PK0406 PK0608 PK0810 PK0912 PK1012 PK1415 PK1618 PK1818 UU9.8 UU10.5 UU16
2024-03-01 09:57:25 25.03MB 电感封装库
针对传统直流变换器升压能力不足的问题,在二次型Boost变换器的基础上,结合开关电感单元具有提高升压比的优点,提出了混合二次型Boost变换器.详细分析了混合二次型Boost DC/DC变换器输入电感L1=L2、L1>L2和L1<L2情况下的工作原理.与传统二次型Boost变换器相比,混合二次型Boost变换器升压比更高,输入电感较小.在理论研究基础上,通过搭建实验样机,验证了混合二次型Boost DC/DC变换器的可行性.
2024-03-01 08:56:29 1.51MB 行业研究
1