压缩包里面有1.2和1.3两个版本,1.3较之1.2主要是快捷功能菜单项有所增加,另外个人感觉1.3滚轮缩放功能不如1.2流畅,还是推荐使用1.2版本。 程序exe文件放其他地方运行也行,不过程序所带的快捷功能菜单估计用不了~~~ exe文件会被杀软报木马病毒,添加信任列表即可。 -------------------- 这个软件主要是利用了MAPGIS本身的功能,以及一些快捷方式! 再利用键盘钩子,映射键盘到鼠标上。 再通过其它算法(可以不用,只不过会很憋拗)达到更好的效果! 并没有对MAPGIS本身做任何改动!所以不会影响MAPGIS的稳定性! 使用过程中关闭本程序也不会有任何问题! (关闭后功能也就鼠标滚轮和快捷方式不能用而已) 当然程序启动后你也可以再打开一个MAPGIS编辑子系统窗口, 同样可以使用鼠标滚轮和快捷方式! -------------------- 软件使用说明: 鼠标滚轮:以鼠标光标为中心放大缩小 鼠标中键: 手形移动窗口 在绘图窗口敲 [Space]空格键 或者 双击[鼠标右键](1.3版本)打开快捷功能菜单 ---------以下的功能要在画线或弧段时才有效(以下实际上是MAPGIS本身的功能)--------- 按住[鼠标右键]单击[鼠标左键]:靠近线或弧段(不加点) ------新功能 按住[鼠标右键]单击[鼠标中键]:封闭线或弧段 ------新功能 按住[鼠标右键]向前推[鼠标滚轮]:锁定线或弧段的折点 ------新功能 按住[鼠标右键]向后拨[鼠标滚轮]:画线或画弧段时退点 ------新功能 [E]键 窗口中心跳到光标处 [5]数字键 更新窗口 [6]数字键 返回上级窗口 [R]键 画线或画弧段时退点 [W]键 调转线或弧段方向 [F]键 靠近线或弧段(加点) [D]键 靠近线或弧段(不加点) [S]键 锁定线或弧段的中点 [A]键 锁定线或弧段的头或尾 [Shift]键 锁定线或弧段的折点 [Ctrl]键 + [鼠标右键] 封闭线或弧段 [Ctrl]+[Enter]暂停或启动本程序
2025-05-21 15:19:31 398KB MAPGIS 鼠标滚轮
1
内容概要:本文详细介绍了Matlab机器人工具箱在处理机器人位姿变换方面的应用,尤其是利用欧拉角(Roll-Pitch-Yaw)进行姿态转换的具体实现。首先,文章讲解了如何使用工具箱中的SerialLink类构建机械臂模型,并通过具体的代码示例展示了如何初始化机械臂以及执行基本的位姿变换。接着,深入探讨了欧拉角转旋转矩阵的方法,包括如何将角度转换为弧度、生成旋转矩阵以及验证结果。此外,文章还介绍了正运动学计算、姿态矩阵的可视化、常见的调试技巧以及处理复合旋转和平移变换的方法。最后,强调了工具箱的不同版本及其应用场景,提供了实用的小技巧和注意事项。 适合人群:对机器人学感兴趣的研究人员和技术爱好者,尤其是那些希望深入了解Matlab机器人工具箱在位姿变换方面应用的人群。 使用场景及目标:① 学习如何使用Matlab机器人工具箱进行位姿变换;② 掌握欧拉角与旋转矩阵之间的转换方法;③ 理解机械臂的正运动学计算和姿态矩阵的可视化;④ 提升解决实际工程问题的能力,如路径规划和姿态控制。 其他说明:文中提供的代码示例均基于Matlab Robotics Toolbox,建议读者在实践中结合官方文档进一步探索。
2025-05-21 12:14:58 1.27MB
1
在Linux系统中,CentOS 7是一个广泛使用的服务器操作系统,而MariaDB则是一个高性能的关系型数据库管理系统,它是MySQL的一个分支,由MySQL创始人Monty Widenius领导的团队开发。本教程将详细介绍如何在CentOS 7上成功安装并配置MariaDB。 让我们了解一下为什么选择MariaDB。MariaDB是为了保持开源精神和避免Oracle对MySQL可能的限制而创建的。它提供了与MySQL兼容的API和语法,同时在性能、安全性及可扩展性方面有所提升。 在开始安装之前,确保你的CentOS 7系统已经更新到最新版本,可以通过运行`sudo yum update`命令来完成。这将确保系统软件包是最新的,减少安装过程中可能出现的问题。 **1. 查看MariaDB的yum包** 在安装任何软件包之前,我们通常需要检查系统是否已经有可用的版本。在终端中输入以下命令来列出所有可用的MariaDB相关的yum包: ```bash yum list mariadb* ``` **2. 安装MariaDB** 在确认可用的包后,你可以使用`yum`包管理器进行安装。执行以下命令,`-y`选项表示自动确认所有安装操作: ```bash yum -y install mariadb* ``` 这个过程可能需要一段时间,因为系统会下载并安装必要的依赖包。 **3. 启动MariaDB服务** 安装完成后,你需要启动MariaDB服务并设置其开机启动,这样每次系统重启时,MariaDB都会自动启动。使用以下命令: ```bash systemctl start mariadb.service systemctl enable mariadb.service ``` **4. 配置MariaDB安全设置** 为了提高安全性,MariaDB提供了一个名为`mysql_secure_installation`的脚本,用于设置root用户的密码,删除匿名用户,禁止root远程登录,以及清除测试数据库。执行以下命令: ```bash mysql_secure_installation ``` 按照提示进行操作,当询问是否要设置root密码时,输入你选择的密码。对于其他安全问题,如移除匿名用户、禁用root远程登录等,可以选择默认的“Y”(是)以增强系统安全性。 **5. 测试MariaDB** 安装和配置完成后,我们可以测试连接到MariaDB服务器。打开一个新的终端窗口,使用以下命令登录,将`your_password`替换为你的root密码: ```bash mysql -u root -p ``` 输入密码后,你应该会被带到MariaDB的命令行界面,证明安装成功。 **总结** 在CentOS 7上安装MariaDB并不复杂,只需几个简单的步骤即可完成。通过使用官方的yum源,我们可以确保获取到最新且稳定的版本。安装完成后,执行必要的安全设置和测试,可以确保数据库系统的稳定性和安全性。这个教程应该能帮助初学者快速上手,但记得在实际生产环境中,还需要考虑更多的安全措施,如定期备份、设置防火墙规则等。如果你在安装过程中遇到任何问题,都可以通过查询文档或在线社区寻求帮助。
2025-05-21 11:53:25 1.03MB centos7 mariadb centos7下安装mariadb centos
1
标题《无线同时同频全双工中射频信道隔离的影响分析》所涉及的知识点主要集中在无线通信技术中的一种高级模式——同时同频全双工(Co-time Co-frequency Full Duplex,CCFD)技术。该技术允许无线终端在同一频率上同时进行发送和接收操作,大幅度提升了频谱效率,这是当前无线通信系统研究中的一个热门话题。 对全双工技术的理解至关重要。全双工(Full Duplex)指的是数据在两个方向上同时进行传输的能力。在传统的无线通信系统中,为了避免发送和接收信号之间的干扰,通常采用半双工(发送和接收分开进行)或者频分双工(FDD,使用不同的频率进行发送和接收)等方式。而CCFD技术则允许在同一频率上同时进行发送和接收,这样可以节省宝贵的频谱资源,并且理论上能够翻倍通信容量。 然而,CCFD操作的主要实际障碍之一是存在自干扰(Self-Interference),即发射机对自身的接收机造成的干扰。自干扰的存在会严重干扰通信质量。因此,为了更好地抑制自干扰,通常会利用射频(Radio Frequency,RF)反馈链路来提供一个参考的自干扰信号。自干扰消除(Self-Interference Cancellation,SIC)技术成为CCFD技术能否成功应用的关键。 在分析中提到,理想的SIC性能是建立在完美的射频链路隔离上的,但在实际的工程项目中很难实现。射频链路不完美隔离导致的射频信号泄露会对SIC性能造成影响。因此,该论文的重点分析了射频链路隔离对SIC性能的影响,并从数学角度进行了推导和验证。 具体而言,研究首先给出了系统模型的简要描述,然后描述了射频泄露信号,接着利用射频泄露信号估计了自干扰信号。由于射频链路隔离的问题,估计的自干扰信号并不准确,因此文章分析了射频链路隔离对于SIC性能的影响。 在技术层面,文中涉及的关键技术点和概念包括: 1. 同时同频全双工(CCFD)技术:探讨了该技术的工作原理及其在提升频谱效率方面的潜力。 2. 自干扰(Self-Interference)问题:研究了自干扰的成因及其对通信系统性能的影响。 3. 自干扰消除(Self-Interference Cancellation,SIC):讨论了在实际中有效消除自干扰的方法和技术。 4. 射频链路隔离:分析了射频链路隔离不完美时对自干扰消除性能的具体影响。 5. 射频泄露信号:描述了射频泄露的机理及其对系统性能的影响。 6. 数学建模:提出了数学模型来分析和估计自干扰信号,以及射频链路隔离对SIC性能的影响。 论文的作者们来自于不同的研究机构和大学,如成都信息工程大学通信工程学院、电子科技大学国家电子科技重点实验室、中国石化集团公司地球物理重点实验室等,体现了该论文研究的跨学科和国际协作的特点。 这篇论文的发布平台是“国际感知与成像会议”的会议论文集,体现了其在无线通信技术领域的学术价值和应用前景。通过深入分析射频信道隔离对自干扰消除性能的影响,该研究为无线通信领域的工程师和研究者提供了宝贵的数据和理论支持,有助于在实际项目中更有效地实现CCFD技术。 该研究论文不仅对无线通信领域的基础理论有所贡献,更为未来通信设备的设计和优化指明了方向,尤其是在提高频谱使用效率和降低自干扰方面具有重大意义。
2025-05-20 18:36:09 361KB 研究论文
1
本设计最大的难点是如何实现红外信号的发射与接收,为了减少电路的繁琐,可以使用单片机来实现软件编码解码,能大大提高电路的灵活性,降低了成本,仅仅使用一个键就能实现对一个灯具的开关和亮度调节,若是把一个按键开关改设成一个矩阵键盘,就可以实现对整个家里的灯具的开关和亮度控制,实用性很强。 在当前信息化快速发展的时代,智能家居的应用变得越来越普及。随着个人局域网技术的快速发展,各种网络通信设备也更加智能和互联。红外遥控技术作为一种成熟且广泛使用的无线控制手段,在智能家居领域中仍然扮演着重要的角色。今天,我们将深入探讨如何在局域网中设计一个高效的红外遥控发射与接收电路,并详细分析单片机在其中的应用,以实现对家居灯具的远程控制。 我们来了解单片机AT89C51。AT89C51是基于8位微处理器架构的单片机,具备4KB的闪存空间,与MCS-51指令集兼容,非常适用于各种嵌入式控制系统的开发。它的应用将大大提高我们设计的电路灵活性并降低成本。在本设计中,AT89C51将负责处理红外信号的编码与解码工作。 在红外发射模块中,我们的重点在于红外发射管的选择和驱动电路的设计。通常,红外发射管会选择940nm波长的红外发光二极管,因为其能够较好地适应家居环境并满足遥控距离的需求。发射电路的设计原理是,由AT89C51单片机的P2.0口输出一个38kHz的载波信号,该信号通过一个NPN型晶体管(例如9013)放大后,驱动红外发射管工作,发射红外信号。对于红外发射管的选择,需要考虑到家居环境中遥控的可行性,选择合适的红外发光二极管至关重要。 在红外接收电路部分,设计中使用了继电器作为执行机构,通过在单片机的P0口连接多个并联回路,并通过不同的继电器闭合状态来表示不同的灯光亮度等级。例如,当四个继电器都闭合时,灯的亮度达到最大;当只有一个继电器闭合时,灯的亮度最低;当所有继电器均不工作时,灯则完全关闭。红外信号接收端采用了SM0038红外线接收器,其解调中心频率与发射端一致,均为38kHz。这样,单片机可以通过检测P1.0口的按键输入,由P2.0口发送相应的编码,接收端接收并解码后,根据接收到的编码数量来控制继电器闭合,实现灯光亮度的调节。 值得注意的是,在整个电路设计中,软件编码解码的应用起到了至关重要的作用。通过软件编码解码,我们不仅简化了电路设计,而且增加了系统的灵活性。这种设计仅需一个按键便可以实现对灯具的开关和亮度调节。如果将按键扩展为矩阵键盘,将能够实现对更多灯具的控制,这在智能家居的多灯具控制中具有很高的实用性。 本设计通过结合硬件电路与软件控制,实现了一个低成本、高效率的红外遥控解决方案。在家居环境中,这种电路设计能提供良好的遥控距离和稳定性,使用户能够方便地对家中的照明设备进行智能化管理。对于未来的发展,随着物联网技术的不断进步,将红外遥控技术与互联网、云计算等技术相结合,将会进一步拓展智能家居系统的应用范围,带来更丰富的用户体验。
1
完整的MN316 OC代码,可以直接利用文件夹里的编译批处理编译生成,利用官方提供的logview进行下载。
2025-05-20 11:43:54 163.42MB
1
"物联网安全及隐私保护中若干关键技术研究" 本文探讨了物联网安全及隐私保护中的关键技术,旨在为相关领域的研究和实践提供有益的参考。物联网安全技术主要包括数据加密、身份认证、数据访问控制和异常监测等,而隐私保护技术主要包括数据匿名化、隐私保护协议和差分隐私等。这些技术在物联网安全及隐私保护中具有广泛的应用前景。 物联网安全技术包括: 1. 数据加密:对物联网中的数据进行加密,以保护数据的机密性和完整性。 2. 身份认证:通过身份认证技术,确保物联网设备的合法身份。 3. 数据访问控制:通过设置访问权限,控制物联网设备对数据的访问。 4. 异常监测:通过监测物联网设备的运行状态和数据,及时发现并处理异常情况。 隐私保护技术包括: 1. 数据匿名化:通过匿名化处理,使得数据在传输和存储过程中无法追踪到具体的个体。 2. 隐私保护协议:通过制定和执行隐私保护协议,规范物联网数据处理和共享行为。 3. 差分隐私:通过在数据发布和处理过程中增加噪声,保护个体隐私。 在物联网安全及隐私保护中,以下关键技术具有广泛的应用前景: 1. 数据加密与身份认证相结合:通过综合运用数据加密和身份认证技术,既可保护数据的机密性和完整性,又可确保设备的合法身份。 2. 基于机器学习的异常监测:通过运用机器学习算法,自动识别和预警物联网设备的异常行为,提高异常监测的准确性和效率。 3. 隐私保护协议与差分隐私结合:通过综合运用隐私保护协议和差分隐私技术,规范物联网数据处理和共享行为,保护个体隐私。 未来展望中,物联网安全及隐私保护技术的研究方向和挑战也将发生变化。以下是未来研究和实践的重要方向: 1. 数据加密技术的改进:开发更加安全和高效的数据加密算法,保护物联网中的敏感数据。 2. 异常监测技术的改进:开发更加智能和高效的异常监测算法,提高物联网设备的安全性和可靠性。 3. 隐私保护技术的改进:开发更加effective的隐私保护技术,保护个体隐私和保护物联网中的敏感数据。 物联网安全及隐私保护中若干关键技术研究对于保障物联网的安全和隐私保护具有重要意义。
2025-05-20 00:05:06 1.19MB
1
内容概要:本文深入探讨了利用COMSOL Multiphysics软件中的等离子体模块建立针-针电极空气流注放电模型的方法。文中详细介绍了模型的几何结构设定、物理场配置(如电子、正负离子的载流子选择)、化学反应的设置(含21组带电粒子反应)以及Helmholtz光电离过程的具体实现方法。此外,还提供了关于求解器配置、边界条件处理等方面的实用技巧,确保模型能够稳定且高效地运行。通过该模型可以直观地观察到空气流注放电过程中的电场分布、粒子密度变化等情况。 适合人群:从事等离子体物理研究的专业人士,特别是那些对高压放电现象感兴趣的科研工作者和技术人员。 使用场景及目标:适用于研究等离子体行为及其在不同条件下的演化规律,特别是在针-针电极间的空气流注放电特性方面。该模型可用于验证理论预测、探索新型放电器件的设计思路,以及优化现有设备的工作性能。 其他说明:文中不仅提供了详细的建模步骤,还包括了一些实际操作中的注意事项和优化建议,有助于提高仿真的成功率并减少计算成本。同时,作者鼓励读者尝试调整模型参数以获得不同的仿真效果,从而进一步加深对该领域的理解。
1
在这个CUG智能优化课设中,学生通过Python编程语言实现了著名的多目标优化算法NSGA-Ⅱ(非支配排序遗传算法第二代),以此来解决CEC-2021(国际计算智能挑战赛)中的复杂优化问题。NSGA-Ⅱ是一种在遗传算法基础上发展起来的高效优化工具,尤其适用于解决多目标优化问题,这些问题通常涉及到多个相互冲突的目标函数,需要找到一组最优解,而非单一的全局最优解。 **NSGA-Ⅱ算法详解** NSGA-Ⅱ的核心思想是基于非支配排序和拥挤距离的概念来寻找帕累托前沿,这是多目标优化问题中的理想解集。算法通过随机生成初始种群,然后进行以下步骤: 1. **选择操作**:NSGA-Ⅱ采用“锦标赛选择”策略,通过比较个体间的适应度值来决定保留哪些个体。适应度值是根据个体在所有目标函数上的表现计算得出的。 2. **交叉操作**:通过“均匀交叉”或“部分匹配交叉”等策略,将两个父代个体的部分基因片段交换,生成新的子代。 3. **变异操作**:应用“位翻转变异”或“区间变异”等方法,对个体的某些基因进行随机改变,增加种群多样性。 4. **非支配排序**:对所有个体进行两两比较,根据是否被其他个体支配,分为不同层级的 fronts。第一层front的个体是最优的,后面的front依次次优。 5. **拥挤距离计算**:在相同层级的front中,为了保持种群多样性,引入拥挤距离指标,衡量个体在目标空间中的分布情况。 6. **精英保留策略**:确保最优解能够传递到下一代,避免优良解的丢失。 7. **新一代种群构建**:结合非支配排序结果和拥挤距离,采用快速解拥挤策略选择最优子代进入下一代种群。 8. **迭代与终止条件**:重复上述步骤,直到达到预设的迭代次数或满足其他停止条件。 **CEC-2021竞赛介绍** CEC(Competition on Evolutionary Computation)是由国际计算智能学会(IEEE Computational Intelligence Society)组织的年度挑战赛,旨在推动计算智能领域的研究和应用。CEC-2021可能包含多个复杂优化问题,如多目标优化、单目标优化、动态优化等,这些问题通常具有高维度、非线性、多模态和不连续的特性。参赛者需要设计和实现优化算法,对这些问题进行求解,评估算法的性能和效率。 通过这个课设,学生不仅能够深入理解NSGA-Ⅱ算法的原理和实现细节,还能通过实际问题的解决,提高解决复杂优化问题的能力。同时,这也为他们提供了参与高水平竞赛的机会,进一步提升其在计算智能领域的研究水平。
2025-05-19 15:35:46 969KB python
1
内容概要:本文详细介绍了利用Maxwell和Simplorer进行无线电能传输(WPT)系统的联合仿真方法。首先,通过Maxwell建立磁耦合机构的几何模型并设置材料属性和激励条件,模拟发射和接收线圈的磁场分布。然后,在Simplorer中构建与磁耦合机构相连的电路系统,如串联谐振电路,并通过接口设置实现两者的联合仿真。最终,通过分析仿真结果,包括电流、电压、功率及传输效率等数据,优化无线电能传输系统的设计。 适合人群:从事无线电能传输研究的技术人员、高校相关专业师生以及对电磁仿真感兴趣的工程技术人员。 使用场景及目标:适用于无线电能传输系统的设计与优化,帮助研究人员深入了解磁耦合机构的磁场分布及其对外部电路性能的影响,从而提高系统的传输效率。 其他说明:文中还分享了一些实用的操作技巧和注意事项,如参数设置、误差校正等,有助于初学者更快掌握联合仿真的方法。
2025-05-19 15:01:38 124KB
1