基于K-Means聚类算法的景区数据分析——以黄果树景区为例.pdf
2022-05-19 03:00:21 1.29MB 聚类 算法 数据结构 参考文献
K-Means算法是一种基于距离的聚类算法,采用迭代的方法,计算出K个聚类中心,把若干个点聚成K类。 MLlib实现K-Means算法的原理是,运行多个K-Means算法,每个称为run,返回最好的那个聚类的类簇中心。初始的类簇中心,可以是随机的,也可以是KMean||得来的,迭代达到一定的次数,或者所有run都收敛时,算法就结束。 用Spark实现K-Means算法,首先修改pom文件,引入机器学习MLlib包: org.apache.spark spark-mllib_2.10</
2022-05-18 14:53:50 52KB ar k-means k-means算法
1
非常好的一篇关于模糊聚类的文章
2022-05-15 23:03:03 75KB fuzzy k means
1
关键技术: logistics回归、K-means聚类、信效度检验、PCA降维、深度学习、神经网络、大数据、数据分析和可视化 本人负责深度学习算法和神经网络构建,以及数据分析和可视化模块。
1
代码主要做的是一个光伏曲线聚类的模型,采用的是较为基础的K-means算法,经过matlab求解后,代码可以直接输出光伏原始数据集、聚类后的数据集,各类曲线的数量以及各类曲线的概率,数据显示结果非常清晰,而且求解的效果更好,店主已经对代码进行了深入的加工和处理,出图效果非常好;参考文档:《基于改进 K-means 聚类的风光发电场景划分》仅部分参考,非完全复现;仿真平台:MATLAB平台
2022-05-14 18:38:35 5.09MB 聚类 k-means 光伏曲线聚类
matlab实现K-means聚类算法,很不错的源代码哦!
2022-05-14 14:53:30 2KB K-means聚类
1
RFM分析与建模 使用K-Means和聚集聚类基于RFM功能创建客户细分
2022-05-13 09:00:58 490KB JupyterNotebook
1
zip文件包含两个函数:kmedia.mat和isodata.mat,这个函数做了两种聚类方法。 Kmedia 函数执行 k-means 算法,它具有树输入(X 向量、Y 向量和最终簇数)并返回每个簇的元素和每个簇的中心。 Isodata 函数返回相同的结果,但有更多的输入,这是 ISODATA 算法所必需的。 有两个函数,“kmedia”和“isodata”,这些函数执行“k-means”和“ISODATA”的聚类算法。 这些函数将点向量和某些参数作为输入,并返回找到的分组及其质心。
2022-05-12 18:31:15 11KB matlab
1
Cluster_2D_Visualization.m 是一个生成随机(均匀)分布数据点的脚本,运行 kMeans.m 和 MATLAB 的内置 kmeans 函数,测量和比较它们的性能(即计算时间),并可视化最终的集群和数据的分布直方图中聚类中的点。 kMeans.m 实现 k-means(无监督学习/聚类算法)。 技术细节: 初始质心是从所有数据点的集合中随机选择的(每个数据点最多一次)。 停止条件是不对任何集群进行任何更改。 clustering_app.mlapp 打开一个带有 GUI 的应用程序,您可以在其中随机生成数据点并将它们聚类。 您可以重新点击所有按钮以查看点生成和聚类算法中的随机性。 clustering_app.mlappinstall 在 MATLAB 编辑器中安装 MATLAB 应用程序。
2022-05-12 12:02:43 162KB matlab
1
1 K-Means聚类 K-Means聚类是最常用的聚类算法,最初起源于信号处理,其目标是将数据点划分为K个类簇,找到每个簇的中心并使其度量最小化。该算法的最大优点是简单、便于理解,运算速度较快,缺点是只能应用于连续型数据,并且要在聚类前指定聚集的类簇数。 下面是K-Means聚类算法的分析流程,步骤如下: 第一步,确定K值,即将数据集聚集成K个类簇或小组。 第二步,从数据集中随机选择K个数据点作为质心(Centroid)或数据中心。 第三步,分别计算每个点到每个质心之间的距离,并将每个点划分到离最近质心的小组,跟定了那个质心。 第四步,当每个质心都聚集了一些点后,重新定义算法选出新的质心。
2022-05-12 11:59:41 156KB criteria k-means k-means算法
1