C++是一种强大的、通用的编程语言,被广泛用于系统软件、应用软件、游戏开发、设备驱动、嵌入式软件以及高性能计算等领域。本压缩包合了丰富的C++学习资源,涵盖了从基础到高级,以及并发编程和现代C++实践等多个方面。 "A Tour of C++"是Bjarne Stroustrup,C++的创始人,为初学者和有经验的程序员编写的一本入门指南。这本书提供了一个快速而全面的C++概述,包括语言的核心特性、标准库和编程风格。读者可以通过这本书了解C++的基本结构和语法,以及如何利用C++进行面向对象编程。 "Effective C++ Digital Collection"和"Effective Modern C++"都是著名C++专家Scott Meyers的著作。这两本书分别针对C++11/14和C++11/14/17/20的现代特性提供了实用的编程建议。"Effective C++"系列书籍深入探讨了C++中的惯用法,帮助读者避免常见的陷阱并提升代码质量。"Effective Modern C++"则更注重于新标准带来的改变,如智能指针、模板元编程和lambda表达式等。 "C++ Concurrency in Action"是Anthony Williams的作品,它详细讲解了C++的并发和多线程编程。C++11引入了对并发编程的支持,这本书将帮助读者理解和利用这些新特性来构建高效、可靠的并发程序,同时涵盖了许多与并发相关的挑战和陷阱。 "Design Patterns in Modern C++20"由Nesteruk和Dmitri合著,讨论了在C++20环境下如何运用设计模式。设计模式是解决常见编程问题的成熟方案,这本书将帮助开发者在C++中实现可重用、可维护的面向对象软件设计。 这个压缩包为C++学习者提供了一个全面的学习路径,从基础概念到高级主题,从并发编程到现代设计实践。通过深入阅读和实践这些资料,无论是初学者还是有经验的C++开发者,都能提升自己的技能,更好地掌握这一强大的编程语言。
2025-09-12 13:06:47 82.83MB
1
内容概要:该数据专注于课堂上学生的行为检测,特别是针对玩手机和睡觉两种不良行为。数据由2388张图片组成,每张图片均配有Pascal VOC格式的xml文件和YOLO格式的txt文件作为标注文件,确保了数据的多样性和灵活性。数据中共包含三种标注类别:“normal”(正常)、“play phone”(玩手机)和“sleep”(睡觉),对应的标注框数量分别为20238、10795和3763,总计34796个框。所有图片和标注均由labelImg工具完成,采用矩形框标注法。; 适合人群:计算机视觉领域研究人员、机器学习爱好者、高校教师及学生等。; 使用场景及目标:①可用于训练和评估课堂行为识别模型,提高课堂管理效率;②适用于研究和开发基于图像的学生行为监测系统,帮助教师及时发现并纠正不良行为。; 其他说明:数据仅提供准确且合理的标注,不对由此训练出的模型或权重文件的精度作出任何保证。
2025-09-12 10:18:49 558KB 数据集 VOC格式 图像标注
1
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、本项目仅用作交流学习参考,请切勿用于商业用途。 随着人工智能领域的飞速发展,数据的准备已成为机器学习与深度学习研究中至关重要的一步。对于计算机视觉领域而言,准确的图像标注是训练优秀模型的基础。在图像标注领域,labelme作为一种流行的标注工具,其产出的标注文件广泛用于各类计算机视觉项目中。而Yolo(You Only Look Once)系列是当前流行的实时目标检测系统,其中YoloV8是该系列的最新进展。将labelme数据标注格式转换为YoloV8语义分割数据的需求日益增长,特别是在图像处理、自动驾驶、安防监控等实际应用场景中。 本项目源码的开发,旨在解决数据格式转换的痛点,使得研究者和工程师能够更加高效地准备用于训练和测试的数据。通过该项目,用户能够将labelme标注工具产生的标注文件转换为YoloV8所支持的语义分割数据格式。这样一来,用户不仅能够节省大量数据预处理的时间,还能够更好地利用YoloV8的强大功能进行模型的开发和应用。 项目的资源代码已经过严格测试,保证了其稳定性和可靠性。无论是计算机领域的毕业生设计课题、课程作业,还是人工智能和计算机科学与技术的专业人员,都可以将此项目作为学习和研究的参考。值得注意的是,源码仅供学习交流使用,禁止用于商业用途,以保护原创者的权益。 为了使用该项目,用户需要有一定的编程基础,特别是熟悉Python语言,因为项目代码是使用Python编写的。项目文件名称为labelme2YoloV8,这表明其主要功能是从labelme的标注数据转换为适用于YoloV8的数据格式。转换过程中可能涉及数据格式的解析、图像的处理和新格式数据的生成等技术环节。 该项目的推出,不仅为机器学习社区提供了便利,还促进了计算机视觉领域研究的深入。通过这样的开源项目,更多的研究者能够参与到前沿技术的实践与创新中,共同推动人工智能技术的快速发展。
2025-09-11 22:35:37 1.95MB python
1
LOKI:智能体轨迹和意图预测的大规模数据及模型评估 LOKI 数据是为了解决自动驾驶环境中异构交通代理(行人和车辆)的联合轨迹和意图预测问题而提出的。该数据包含 RGB 图像和对应的 LiDAR 点云,这些点云具有行人和车辆的详细的逐帧标签。LOKI 数据允许对代理的未来意图进行显式建模,它还显示了有前途的方向,共同推理的意图和轨迹,同时考虑不同的外部因素,如代理。 智能体轨迹预测是自动驾驶环境中的一项关键任务。然而,目前的研究活动并不直接适用于智能和安全关键系统。这主要是因为非常少的公共数据是可用的,并且它们仅从受限的自我中心视图考虑针对短时间水平的行人特定意图。为此,我们提出了 LOKI 数据,旨在解决自动驾驶环境中异构交通代理(行人和车辆)的联合轨迹和意图预测问题。 轨迹预测的最新进展表明,对智能体意图的明确推理是重要的来准确预测它们的运动。然而,目前的研究活动并不直接适用于智能和安全关键系统。这主要是因为非常少的公共数据是可用的,并且它们仅从受限的自我中心视图考虑针对短时间水平的行人特定意图。 为此,我们提出了 LOKI 数据,旨在解决自动驾驶环境中异构交通代理(行人和车辆)的联合轨迹和意图预测问题。LOKI 数据包含 RGB 图像和对应的 LiDAR 点云,这些点云具有行人和车辆的详细的逐帧标签。LOKI 数据允许对代理的未来意图进行显式建模,它还显示了有前途的方向,共同推理的意图和轨迹,同时考虑不同的外部因素,如代理。 我们的模型是基于轨迹预测和意图预测的联合模型,我们的方法优于国家的最先进的轨迹预测方法高达 27%,也提供了一个基线帧明智的意图估计。我们的方法可以更好地理解智能体的长期目标和短期意图,从而提高轨迹预测的精度。 在过去的几年中,已经有广泛的研究来预测场景中的动态代理的未来轨迹,例如行人和车辆。这对于诸如自主车辆或社交机器人导航之类的安全关键应用来说是一项非常重要且具有挑战性的任务。虽然这些方法在最近几年有了显著的进步,但很少有基准测试专门测试这些模型是否能够准确地推理出关键。 人类行为作为目标导向实体的研究在心理学、神经科学和计算机视觉的子领域中具有悠久而丰富的跨学科历史。人类决策过程本质上是分层的,由几个层次的推理和规划机制组成,这些机制协同工作,以实现各自的短期和长期愿望。最近的研究表明,明确地推理长期目标和短期意图可以帮助实现目标。 在这项工作中,我们建议将异构(车辆,行人等)的任务。多智能体轨迹预测和意图预测。我们认为,明确地推理智能体的长期目标和短期意图是在我们的工作中,我们将目标定义为智能体在给定预测范围内想要达到的最终位置,而意图是指智能体如何实现其目标。 例如,考虑十字路口处的车辆。在最高层次上,说他们想达到他们的最终目标,向左转到他们的最终目标点,这反过来可能是一些更高层次的结束(如回家)所必需的。然而,其轨迹的精确运动受许多因素的影响,包括 i)代理人自己的意愿,ii)社会交互,iii)环境约束,iv)上下文线索。 因此,当推理智能体我们相信,这种复杂的短期意图和长期目标的层次结构是无处不在的,事实上,至关重要的,代理运动规划,因此扩展,运动预测。我们提出了一种架构,其考虑类似于 [9,5,3,4] 的长期目标,但添加了用于调节轨迹预测模块的逐帧意图估计的关键组件。通过强制模型学习代理的离散短期意图,我们观察到预测模块的性能提高。 同样丰富成功的是使用数据对计算机视觉进行基准测试的当代历史在 MNIST [11] 和 ImageNet [12] 等基准测试等开创性工作的指导下,基准测试进展和从数据中学习在现代深度学习的成功中发挥了关键作用。目前,不存在允许在高度复杂的环境中对异构代理进行明确的逐帧意图预测的公共数据。尽管很少有数据被设计用于从自我中心的角度研究行人的意图或行为 [13,7,6,14],但这是对自动驾驶任务的广泛研究的固有限制。 因此,我们提出了一个联合轨迹和意图预测数据,该数据包含 RGB 图像和对应的 LiDAR 点云,这些点云具有行人和车辆的详细的逐帧标签。LOKI 数据允许对代理的未来意图进行显式建模它还显示了有前途的方向,共同推理的意图和轨迹,同时考虑不同的外部因素,如代理。 我们表明,通过建模的短期意图和长期目标与明确的监督,通过意图标签,可以实现更好的轨迹预测精度。此外,在每一帧预测一个特定的意图为我们的模型增强了模型的泛化能力和鲁棒性。
2025-09-11 19:38:17 1.86MB 轨迹预测
1
驾驶员疲劳监测DMS数据:36668张RGB与红外摄像头图像的深度标签研究数据,驾驶员疲劳监测DMS相关数据,DMS数据约36668张,标签结构看图,均有标签。 包涵rgb与红外摄像头数据 ,驾驶员疲劳监测DMS; 36668张数据; 标签结构; RGB与红外摄像头数据; 标签齐全。,驾驶员疲劳监测:DMS数据RGB与红外摄像头图像研究 在当今社会,随着汽车保有量的不断增加,道路交通事故的风险也随之上升。其中,由于驾驶员疲劳引起的交通事故占了相当大的比例,因此,如何有效监测驾驶员疲劳状态,预防因疲劳驾驶导致的交通事故,成为了一个亟待解决的问题。为了解决这一问题,科研人员和企业开始研发各种驾驶员疲劳监测系统(Driver Monitoring System,简称DMS),利用先进的传感器技术、图像处理技术和人工智能算法,对驾驶员的生理和行为特征进行实时监测,以便在驾驶员出现疲劳状态时及时发出警告。 本文所述的“驾驶员疲劳监测DMS数据”,便是为上述研究提供支持的关键数据资源。该数据包含约36668张图像,这些图像由RGB摄像头和红外摄像头共同采,覆盖了驾驶员在不同时间、不同光照条件下的多场景驾驶状态。每一张图像都附带了深度标签,这些标签详细记录了驾驶员的面部特征、表情、眼睛状态、头部姿态等关键信息,为深度学习和模式识别算法提供了宝贵的学习样本。 RGB摄像头和红外摄像头的数据相辅相成,RGB图像能够提供丰富的色彩信息,用于分析驾驶员的面部表情和头部姿态;而红外摄像头则不受光照条件的影响,能够在夜间或低光照环境下捕捉到清晰的图像,对于驾驶员的眼睛状态监测尤为重要。数据中的标签结构经过精心设计,能够为研究者提供足够的信息用于训练和验证疲劳检测算法。 数据的多样化应用场景包括了对驾驶员疲劳状态的深入分析与研究、DMS系统的应用与研究,以及与DMS相关的设计、实施和优化方法。数据的文件列表中,除了图像文件外,还包括了多篇文档,如研究引言、深入分析与应用、研究与应用以及相关的HTML和DOC文件,这些文档不仅对数据提供了详细描述,还可能包含了与数据相关的研究成果和分析方法。 通过这些详尽的数据和研究资料,研究人员可以对DMS系统进行更深入的研究,开发出更加精准可靠的疲劳检测技术,最终实现在实际驾驶场景中有效预防疲劳驾驶的目标。此外,随着机器学习和深度学习技术的不断进步,这些数据也可以作为基准数据,用于评估和比较不同的疲劳检测算法的性能,推动相关技术的发展和应用。 该驾驶员疲劳监测DMS数据不仅是研究疲劳监测技术的宝贵资源,也为推动智能交通系统的发展提供了重要的支持,为减少由疲劳驾驶引起的交通事故,保护人民的生命财产安全作出了贡献。
2025-09-11 18:55:06 1.81MB ajax
1
煤矿井下作业环境复杂,存在各种潜在的安全风险,其中矿井下作业人员的安全帽佩戴情况是保障安全的重要一环。为了提升煤矿安全管理的智能化水平,科研人员创建了专门针对煤矿井下场景的数据,特别是针对煤矿工人佩戴安全帽的情况,以及钻场钻机设备的监测。这一数据采用了Pascal VOC格式与YOLO格式两种通用的数据标注形式,包含了超过七万张标注图片,旨在通过计算机视觉技术,特别是深度学习方法,实现对矿井下作业场景中安全帽佩戴情况的自动检测,以及钻机卡盘等关键设备的监测。 该数据包含了70677张图片,每张图片均配有对应的标注信息,标注文件包括VOC格式的xml文件和YOLO格式的txt文件。图片分辨率统一为1280x720,覆盖了五种类别的目标,分别为安全帽、煤矿工人、夹持器、钻杆以及钻机卡盘。这些类别分别用中文和英文表示,其中“anquanmao”对应“安全帽”,“gongren”对应“煤矿工人”,“jiachiqi”对应“夹持器”,“zuangan”对应“钻杆”,“zuanjikapan”对应“钻机卡盘”。每个类别都进行了详细的矩形框标注,分别统计出各类别在数据中所占的框数。例如,“安全帽”标注的框数为31118个,“煤矿工人”标注的框数为39479个,其他类别也有相应的标注数量。 在标注过程中,科研人员使用了名为labelImg的标注工具,这是一种广泛应用于目标检测任务的图像标注工具。对于标注规则,采用了矩形框标注方法,简单直观地对目标类别进行了框选,框选的矩形框精确地覆盖了目标对象。 此外,数据的制作者也强调了数据的使用目的,即仅作为提供准确合理标注图片的工具,不包含对最终训练模型或权重文件精度的任何保证。虽然不提供任何关于模型精度的保证,但是数据的详细和规范的标注为研究人员提供了一个高质量的研究基础,可以应用在深度学习、计算机视觉以及自动化检测等多个领域,以改善矿井作业的安全性,从而有效地预防矿难事故的发生。 重要的是,对于此类数据的使用,研究者和开发者应当遵守相关的法律和道德标准,确保数据的应用不会侵犯个人隐私和知识产权,并且不应对真实世界中的作业安全产生负面影响。实际应用中,这套数据结合相应的图像识别与检测算法,可以大大降低人工监督的工作量,为煤矿井下的作业安全提供实时的智能监测支持。 与此同时,这套数据的发布也反映了当前机器学习、计算机视觉技术在工业安全领域的应用趋势。随着技术的持续进步,未来有望在矿井监控、自动化巡检、异常事件预测等多方面发挥更大作用,提高矿井工作的自动化与智能化水平,从根本上保障矿工的安全和提高矿井生产效率。
2025-09-11 14:10:00 1.15MB 数据集
1
内容概要:本文介绍了基于Kerala数据的洪水暴雨内涝预测模型,旨在利用机器学习算法预测洪水发生的可能性。文中详细探讨了五种机器学习算法——KNN分类、逻辑回归、支持向量机、决策树和随机森林的具体应用及其优劣。通过对Kerala地区的降雨数据进行建模和验证,最终选出了表现最优的模型。文章不仅提供了完整的代码示例和注释,还涵盖了数据预处理、特征选择、模型训练与评估等多个关键环节。 适合人群:对机器学习感兴趣的研究人员、数据科学家以及希望了解如何运用机器学习解决实际问题的技术爱好者。 使用场景及目标:适用于需要进行自然灾害预测的机构和个人,特别是那些关注洪水、暴雨和内涝等气象灾害的人群。通过学习本文,读者能够掌握如何构建和优化机器学习模型,从而为防灾减灾提供科学依据。 其他说明:虽然本文主要聚焦于洪水预测,但它所涉及的方法论同样适用于其他类型的自然灾难预测任务,如地震预警、台风路径预测等。此外,文中提供的代码和数据可以帮助读者快速上手实践,进一步加深对机器学习的理解。
2025-09-11 09:44:22 644KB 机器学习 数据挖掘 决策树 随机森林
1
FJSP的标准测试数据,包含18个算例。数据来源:S. Dauzère-Pérès and J. Paulli. Solving the General Multiprocessor Job-Shop Scheduling Problem. Technical report, Rotterdam School of Management, Erasmus Universiteit Rotterdam, 1994.
2025-09-10 21:06:32 30KB 数据集 柔性作业车间 运筹优化
1
基于PyTorch的深度学习实战项目合了一系列应用广泛的深度学习案例,涵盖了多个专业领域。PyTorch是由Facebook的人工智能研究团队开发的开源机器学习库,它以其动态计算图、易用性和灵活性而在学术界和工业界广受欢迎。开发者通过PyTorch能够高效地构建和训练复杂的神经网络模型,并将其应用于解决实际问题。 深度学习作为一种基于数据的机器学习方法,近年来在图像识别、自然语言处理、语音识别、推荐系统等领域取得了巨大的成功。相较于传统的机器学习方法,深度学习在处理非结构化数据方面展现出更强的能力。由于其能够自动学习和提取特征,因此能够在很多复杂的任务中达到甚至超越人类专家的水平。 这份实战项目合包含了从基础到高级的各种案例,旨在帮助读者快速掌握深度学习的核心技术和应用技巧。通过对不同案例的学习和实践,读者可以了解到如何使用PyTorch构建深度神经网络,并在多个实际问题上进行应用。例如,读者可以学习到如何利用PyTorch开发图像识别系统,这包括使用卷积神经网络(CNNs)来识别和分类图像中的对象;如何搭建递归神经网络(RNNs)来处理序列数据,例如在自然语言处理中进行文本生成和机器翻译;以及如何构建生成对抗网络(GANs)来生成新的数据实例等。 此外,实战项目合可能还包含了深度强化学习的案例,这是深度学习与强化学习相结合的产物,使智能体能够在复杂的环境中学习策略,解决诸如游戏、机器人导航等问题。通过这些案例,读者不仅能够学习到算法和模型,还能了解到如何进行数据预处理、模型调优、过拟合避免等实际操作中必须掌握的技能。 合中的每个项目都附带了完整的代码,这意味着读者可以直接运行这些代码来观察结果,或者在此基础上进行修改和扩展。完整的代码是学习深度学习不可或缺的部分,它使得读者能够快速地从理论走向实践,加深对深度学习算法工作原理的理解,并提高解决实际问题的能力。 对于希望深入学习深度学习的初学者和专业开发者来说,这份合既是一个很好的起点,也是不断学习和提升的宝贵资源。通过动手实践这些项目,学习者可以更好地理解深度学习的理论知识,并将其应用于解决真实世界的问题,如医学影像分析、金融风险预测、自动驾驶汽车的开发等。 通过这份实战项目合,学习者可以掌握PyTorch框架的使用,学习到构建各种深度学习模型的方法,并将所学应用到多个领域。同时,通过实际操作,学习者可以积累经验,加深对深度学习内在机制的认识,为未来的职业发展打下坚实的基础。这份资源无疑是深度学习爱好者的宝贵财富,可以显著提高他们在深度学习领域的实践技能和理论水平。
2025-09-10 16:31:56 842B PyTorch 深度学习实战
1
单字符标注,可直接用于训练
2025-09-10 16:31:43 12.65MB 数据集
1