Introduction to Algorithms Third Editio Contents I Foundations Introduction 3 1 The Role of Algorithms in Computing 5 1.1 Algorithms 5 1.2 Algorithms as a technology 11 2 Getting Started 16 2.1 Insertion sort 16 2.2 Analyzing algorithms 23 2.3 Designing algorithms 29 3 Growth of Functions 43 3.1 Asymptotic notation 43 3.2 Standard notations and common functions 53 4 Divide-and-Conquer 65 4.1 The maximum-subarray problem 68 4.2 Strassen’s algorithm for matrix multiplication 75 4.3 The substitution method for solving recurrences 83 4.4 The recursion-tree method for solving recurrences 88 4.5 The master method for solving recurrences 93 4.6 Proof of the master theorem 97 5 Probabilistic Analysis and Randomized Algorithms 114 5.1 The hiring problem 114 5.2 Indicator random variables 118 5.3 Randomized algorithms 122 5.4 Probabilistic analysis and further uses of indicator random variables 130 vi Contents II Sorting and Order Statistics Introduction 147 6Heapsort151 6.1 Heaps 151 6.2 Maintaining the heap property 154 6.3 Building a heap 156 6.4 The heapsort algorithm 159 6.5 Priority queues 162 7 Quicksort 170 7.1 Description of quicksort 170 7.2 Performance of quicksort 174 7.3 A randomized version of quicksort 179 7.4 Analysis of quicksort 180 8 Sorting in Linear Time 191 8.1 Lower bounds for sorting 191 8.2 Counting sort 194 8.3 Radix sort 197 8.4 Bucket sort 200 9 Medians and Order Statistics 213 9.1 Minimum and maximum 214 9.2 Selection in expected linear time 215 9.3 Selection in worst-case linear time 220 III Data Structures Introduction 229 10 Elementary Data Structures 232 10.1 Stacks and queues 232 10.2 Linked lists 236 10.3 Implementing pointers and objects 241 10.4 Representing rooted trees 246 11 Hash Tables 253 11.1 Direct-address tables 254 11.2 Hash tables 256 11.3 Hash functions 262 11.4 Open addressing 269 11.5 Perfect hashing 277 Contents vii 12 Binary Search Trees 286 12.1 What is a binary search tree? 286 12.2 Querying a binary search tree 289 12.3 Insertion and deletion 294 ? 12.4 Randomly built binary search trees 299 13 Red-Black Trees 308 13.1 Properties of red-black trees 308 13.2 Rotations 312 13.3 Insertion 315 13.4 Deletion 323 14 Augmenting Data Structures 339 14.1 Dynamic order statistics 339 14.2 How to augment a data structure 345 14.3 Interval trees 348 IV Advanced Design and Analysis Techniques Introduction 357 15 Dynamic Programming 359 15.1 Rod cutting 360 15.2 Matrix-chain multiplication 370 15.3 Elements of dynamic programming 378 15.4 Longest common subsequence 390 15.5 Optimal binary search trees 397 16 Greedy Algorithms 414 16.1 An activity-selection problem 415 16.2 Elements of the greedy strategy 423 16.3 Huffman codes 428 16.4 Matroids and greedy methods 437 16.5 A task-scheduling problem as a matroid 443 17 Amortized Analysis 451 17.1 Aggregate analysis 452 17.2 The accounting method 456 17.3 The potential method 459 17.4 Dynamic tables 463 viii Contents V Advanced Data Structures Introduction 481 18 B-Trees 484 18.1 Definition of B-trees 488 18.2 Basic operations on B-trees 491 18.3 Deleting a key from a B-tree 499 19 Fibonacci Heaps 505 19.1 Structure of Fibonacci heaps 507 19.2 Mergeable-heap operations 510 19.3 Decreasing a key and deleting a node 518 19.4 Bounding the maximum degree 523 20 van Emde Boas Trees 531 20.1 Preliminary approaches 532 20.2 A recursive structure 536 20.3 The van Emde Boas tree 545 21 Data Structures for Disjoint Sets 561 21.1 Disjoint-set operations 561 21.2 Linked-list representation of disjoint sets 564 21.3 Disjoint-set forests 568 21.4 Analysis of union by rank with path compression 573 VI Graph Algorithms Introduction 587 22 Elementary Graph Algorithms 589 22.1 Representations of graphs 589 22.2 Breadth-first search 594 22.3 Depth-first search 603 22.4 Topological sort 612 22.5 Strongly connected components 615 23 Minimum Spanning Trees 624 23.1 Growing a minimum spanning tree 625 23.2 The algorithms of Kruskal and Prim 631 Contents ix 24 Single-Source Shortest Paths 643 24.1 The Bellman-Ford algorithm 651 24.2 Single-source shortest paths in directed acyclic graphs 655 24.3 Dijkstra’s algorithm 658 24.4 Difference constraints and shortest paths 664 24.5 Proofs of shortest-paths properties 671 25 All-Pairs Shortest Paths 684 25.1 Shortest paths and matrix multiplication 686 25.2 The Floyd-Warshall algorithm 693 25.3 Johnson’s algorithm for sparse graphs 700 26 Maximum Flow 708 26.1 Flow networks 709 26.2 The Ford-Fulkerson method 714 26.3 Maximum bipartite matching 732 ? 26.4 Push-relabel algorithms 736 ? 26.5 The relabel-to-front algorithm 748 VII Selected Topics Introduction 769 27 Multithreaded Algorithms 772 27.1 The basics of dynamic multithreading 774 27.2 Multithreaded matrix multiplication 792 27.3 Multithreaded merge sort 797 28 Matrix Operations 813 28.1 Solving systems of linear equations 813 28.2 Inverting matrices 827 28.3 Symmetric positive-definite matrices and least-squares approximation 832 29 Linear Programming 843 29.1 Standard and slack forms 850 29.2 Formulating problems as linear programs 859 29.3 The simplex algorithm 864 29.4 Duality 879 29.5 The initial basic feasible solution 886 x Contents 30 Polynomials and the FFT 898 30.1 Representing polynomials 900 30.2 The DFT and FFT 906 30.3 Efficient FFT implementations 915 31 Number-Theoretic Algorithms 926 31.1 Elementary number-theoretic notions 927 31.2 Greatest common divisor 933 31.3 Modular arithmetic 939 31.4 Solving modular linear equations 946 31.5 The Chinese remainder theorem 950 31.6 Powers of an element 954 31.7 The RSA public-key cryptosystem 958 ? 31.8 Primality testing 965 ? 31.9 Integer factorization 975 32 String Matching 985 32.1 The naive string-matching algorithm 988 32.2 The Rabin-Karp algorithm 990 32.3 String matching with finite automata 995 ? 32.4 The Knuth-Morris-Pratt algorithm 1002 33 Computational Geometry 1014 33.1 Line-segment properties 1015 33.2 Determining whether any pair of segments intersects 1021 33.3 Finding the convex hull 1029 33.4 Finding the closest pair of points 1039 34 NP-Completeness 1048 34.1 Polynomial time 1053 34.2 Polynomial-time verification 1061 34.3 NP-completeness and reducibility 1067 34.4 NP-completeness proofs 1078 34.5 NP-complete problems 1086 35 Approximation Algorithms 1106 35.1 The vertex-cover problem 1108 35.2 The traveling-salesman problem 1111 35.3 The set-covering problem 1117 35.4 Randomization and linear programming 1123 35.5 The subset-sum problem 1128 Contents xi VIII Appendix: Mathematical Background Introduction 1143 A Summations 1145 A.1 Summation formulas and properties 1145 A.2 Bounding summations 1149 B Sets, Etc. 1158 B.1 Sets 1158 B.2 Relations 1163 B.3 Functions 1166 B.4 Graphs 1168 B.5 Trees 1173 C Counting and Probability 1183 C.1 Counting 1183 C.2 Probability 1189 C.3 Discrete random variables 1196 C.4 The geometric and binomial distributions 1201 ? C.5 The tails of the binomial distribution 1208 D Matrices 1217 D.1 Matrices and matrix operations 1217 D.2 Basic matrix properties 1222 Bibliography 1231 Index 1251
2023-03-22 22:02:25 5.39MB 算法导论 第三版 英文原版 高清文字版
1
在本文中,我们考虑了为连续时间非线性系统开发控制器的问题,其中控制该系统的方程式未知。 利用这些测量结果,提出了两个新的在线方案,这些方案通过两个基于自适应动态编程(ADP)的新实现方案来合成控制器,而无需为系统构建或假设系统模型。 为了避免对系统的先验知识的需求,引入了预补偿器以构造增强系统。 通过自适应动态规划求解相应的Hamilton-Jacobi-Bellman(HJB)方程,该方程由最小二乘技术,神经网络逼近器和策略迭代(PI)算法组成。 我们方法的主要思想是通过最小二乘技术对状态,状态导数和输入信息进行采样以更新神经网络的权重。 更新过程是在PI框架中实现的。 本文提出了两种新的实现方案。 最后,给出了几个例子来说明我们的方案的有效性。 (C)2014 ISA。 由Elsevier Ltd.出版。保留所有权利。
2023-03-21 17:45:57 901KB Model-free controller; Optimal control;
1
计算机网络第三版答案
2023-03-21 09:43:02 577KB 计算机网络 答案
1
Edited By Owen Burkinshaw, Indiana University-Purdue University, Indianapolis , U.S.A. By Charalambos Aliprantis, Purdue University, Indianapolis, U.S.A. Description With the success of its previous editions, Principles of Real Analysis, Third Edition, continues to introduce students to the fundamentals of the theory of measure and functional analysis. In this thorough update, the authors have included a new chapter on Hilbert spaces as well as integrating over 150 new exercises throughout. The new edition covers the basic theory of integration in a clear, well-organized manner, using an imaginative and highly practical synthesis of the "Daniell Method" and the measure theoretic approach. Students will be challenged by the more than 600 exercises contained in the book. Topics are illustrated by many varied examples, and they provide clear connections between real analysis and functional analysis. Audience Upper-level graduate or undergraduate students studying real analysis. Contents Fundamentals of Real Analysis Topology and Continuity The Theory of Measure The Lebesgue Integral Normed Spaces and Lp-Spaces Hilbert Spaces Special Topics in Integration Bibliography
2023-03-20 20:37:31 9.32MB 实分析 基础 教材
1
针对传统模型参数辨识方法和遗传算法用于模型参数辨识时的缺点,提出了一种基于微粒群优化(PSO)算法的模型参数辨识方法,利用PSO算法强大的优化能力,通过对算法的改进,将过程模型的每个参数作为微粒群体中的一个微粒,利用微粒群体在参数空间进行高效并行的搜索来获得过程模型的最佳参数值,可有效提高参数辨识的精度和效率。
2023-03-14 16:51:01 277KB 微粒群算法
1
非线性系统的有限时间自适应模糊跟踪控制设计
2023-03-14 09:52:17 384KB 研究论文
1

针对一类未知的连续非线性系统, 提出一个基于单网络近似动态规划(ADP) 的近似最优控制方案. 该方
案通过设计一个新型的递归神经网络(RNN) 辨识器放松了系统模型需已知或部分已知的要求, 并利用一个神经网
络(NN) 近似系统的性能指标函数消除了常规ADP方法中的控制网络. 通过Lyapunov 理论分析严格证明了闭环系
统内所有信号一致最终有界, 并且所获得的性能指标函数和控制输入分别收敛到最优性能指标函数和最优控制输入
的小邻域内. 仿真结果验证了所提出控制方案的有效性.

1
针对一类具有死区的非仿射非线性系统,将预设性能控制与有限时间控制相结合,提出一种具有预设性能的自适应有限时间跟踪控制方法.基于Backstepping技术、模糊逻辑系统及有限时间Lyapunov稳定理论,给出使系统半全局实际有限时间稳定(semi-globally practically finite-time stable,SGPFS)的充分条件和设计步骤.该控制策略不仅使系统的输出误差在有限时间内收敛到一个预先设定区域,同时保证其收敛速度、最大超调量和稳态误差均满足预先设定的性能要求.最后通过仿真示例验证了所提出设计方法的有效性.
1
python网络编程第三版pdf 共364页 中文版 图灵教育
2023-03-09 09:57:18 63.26MB python
1
计算机算法-设计与分析导论(第三版 影印版)
2023-03-09 08:43:42 16.85MB 算法
1