Capsule Networks胶囊网络的Tensorflow实现
2021-09-19 11:50:19 17KB Python开发-机器学习
1
SE-Resnet注意力机制网络搭建,包含残差网络和全连接层,特征融合构建SE-resnet网络结构
2021-09-14 15:22:28 1KB SE注意力机制
1
通过双向LSTM-CNNs-CRF教程进行端到端序列标签 这是针对ACL'16论文的PyTorch教程 该存储库包括 资料夹 设置说明文件 预训练模型目录(笔记本电脑将根据需要自动将预训练模型下载到此目录中) 作者 安装 最好的安装pytorch的方法是通过 设置 创建新的Conda环境 conda create -n pytorch python=3.5 激活公寓环境 source activate pytorch 使用特定的python版本(python 3.5)设置笔记本 conda install notebook ipykernel ipython kernel install --user PyTorch安装命令: conda install pytorch torchvision -c pytorch NumPy安装 conda install -c anaco
2021-09-13 10:31:31 34.06MB nlp tutorial deep-learning reproducible-research
1
仅支持tensorflow1.x版本,默认训练数据集为mnist,需要自己下载,然后新建一个data文件夹,将数据集放入该文件夹下即可
2021-09-09 21:57:06 332KB 胶囊网络 深度学习 神经网络
1
轻松搞懂【TF-IDF、word2vec、svm、cnn、textcnn、bilstm、cnn+bilstm、bilstm+attention实现】英文长文本分类。 内含英文长文本数据加实现代码。 宝贵资源,缺积分了没办法
2021-09-09 09:11:36 79.14MB word2vec svm cnn textcnn
1
深度排序 学习使用seq2seq模型对数字进行排序。 运行这段代码 调用pip install -r requirements.txt安装所有依赖项。 产生资料 可以使用所有数据 样品电话 python generate.py \ --name="train" \ --size=10000 \ --max_val=256 \ --min_length=2 \ --max_length=256 \ 训练 可以通过在设置适当的参数,然后将train.run()设置为在调用,最后一次调用python main.py (是的,我很抱歉,对于未配置命令行参数)。 从上面的示例调用生成的数据集中训练了1个纪元,大约花费了10分钟。 评估 在train.txt上训练模型后,使用生成测试集( name="test" ),然后以与上所述相同的方式运行 ,以查看该模型的一些示例评估。 再
1
行业分类-物理装置-一种基于物体区域注意力机制的视频问答方法.zip
使用 seq2seq 模型和基于注意力机制的 seq2seq 模型(AttSeq2Seq)模型两种方法,实现 MNIST 数据集分类
2021-08-30 19:53:26 11.06MB seq2seq AttSeq2Seq MNIST
1
Matlab多层lstm代码使用具有CNN功能的深度双向LSTM在视频序列中进行动作识别 我们已经使用caffe模式使用matlab脚本“ oneFileFeatures ...”从视频中提取了深层功能。 每个CSV文件代表一个视频的功能。 使用“ TrianTestSpit.m”将其拆分。 火车数据中的每个CSV都会合并在一起,以使用“ EachClassCSV”为每个班级创建一个CSV文件。 使用“ EachClassCSV”文件在训练数据上进行训练和验证拆分,它也为我们提供了标签。 使用“ oneHotLabeling”将其转换为热点。 最后,我们使用“ LSTM.py培训代码”,该代码包含简单的LSTM,多层LSTM和多层双向LSTM。 请引用以下论文 Ullah, A., Ahmad, J., Muhammad, K., Sajjad, M., & Baik, S. W. (2018). Action Recognition in Video Sequences using Deep Bi- Directional LSTM With CNN Features. IEEE A
2021-08-28 21:14:50 10KB 系统开源
1
在 2014 年,随着深度学习的进一步发展,seq2seq 的训练模式和翻译模式已经开始进入人们的视野。除此之外,在端到端的训练方法中,除了需要海量的业务数据之外,在网络结构中加入一些重要的模块也是非常必要的。在此情形下,基于循环神经网咯(Recurrent Neural Network)的注意力机制(Attention Mechanism)进入了人们的视野。除了之前提到的机器翻译和自然语言处理领域之外,计算机视觉中的注意力机制也是十分有趣的,本文将会简要介绍一下计算机视觉领域中的注意力方法。
2021-08-28 10:03:28 215KB 计算机视觉 深度学习 注意力机制
1