在A/D和D/A转换器、数据采集系统以及各种测量设备中,都需要高精度、高稳定性的基准电压源,并且基准电压源的精度和稳定性决定了整个系统的工作性能。电压基准源主要有基于正向VBE的电压基准、基于齐纳二极管反向击穿特性的电压基准、带隙电压基准等多种实现方式,其中带隙基准电压源具有低温度系数、高电源抑制比、低基准电压等优点,因而得到了广泛的应用。 本文在基于传统带隙电压基准源原理的基础上,采用电流反馈、一级温度补偿等技术,同时在电路中加入启动电路,设计了一个高精度、输出可调的带隙基准电压源,并在SMIC 0.25μm CMOS工艺条件下对电路进行了模拟和仿真。 1 带隙基准电压源工作原理与传统
2025-04-14 14:07:53 195KB 电源技术
1
技术进步、资本积累与农村劳动力转移的动态均衡模型,王鑫,陈纪平,刘易斯-拉尼斯-费景汉模型、乔根森模型、托达罗模型、推拉理论等均从不同的角度对农村劳动力转移现象作出了解释,但这些经典理论�
2025-04-14 10:52:25 308KB 首发论文
1
一共12章,对应原书中的12章内容,相交于第三版的课件,这个版本的课件内容更加与时俱进,因为新书是2022年7月出版,因此课件内容也更新。 另附上《数据挖掘:概念与技术》韩家炜 第三版 PPT 课件地址:https://download.csdn.net/download/aspeipei/88274616
2025-04-14 09:45:13 70.38MB 数据挖掘
1
matlab中存档算法代码FRC_分辨率 在光学纳米技术中测量图像分辨率 FRCresolution软件发行 该软件作为RJP Nieuewenhuizen,KA Lidke,M.Bates,D.Leyton Puig,D.Grunwald,S.Stallinga,B.Rieger,Nature Methods,2013 doi:10.1038 / nmeth.2448的文章的随附软件进行分发。 此发行版包含MATLAB软件和ImageJ插件,以运行(部分)本文中介绍的算法。 MATLAB软件比ImageJ插件更广泛。 的MATLAB 提供的脚本使用Matlab()。 该示例代码使用DIPimage工具箱中的功能,您必须先安装它,然后才能运行提供的示例。 DIPimage是可免费使用的MATLAB图像处理工具箱: 提供Windows的安装程序,Linux和Mac的存档文件。 此外,具有曲线拟合工具箱也很方便,但不是必需的。 在matlabfunctions目录中,包含所有相关的matlab功能。 有4个示例显示了对2D FRC分辨率和曲线example1.m,2D各向异性FLC exa
2025-04-14 09:30:37 18.15MB 系统开源
1
为了掌握高速公路未来的安全状况,通过有效地控制各种影响因素,减少交通事故,增进高速公路安全,在路段划分和影响因素分析的基础上,利用收集的多条高速公路数据建立了基于广义线性回归的高速公路事故预测模型,通过比较泊松、负二项、零堆积泊松和零堆积负二项4种概率分布模型回归的结果,最终确定了负二项分布形式的事故预测模型,并利用弹性分析的方法确定了模型中单个变量对事故的边际影响。研究表明:环境变量和交通流变量对事故的发生有较大影响。
2025-04-13 20:07:50 368KB 工程技术 论文
1
分析一个电源,往往从输入开始着手。   220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变 手机充电器电源变换电路原理分析主要涉及电源技术中的基本组件和工作原理。在这个电路中,220V的交流电输入通过一个4007半波整流二极管进行单向导通,使得交流电转换为脉动直流电。接着,这股电流通过一个10欧姆的电阻,此电阻起到过流保护的作用,如果发生故障导致电流过大,电阻会烧断以防止更大损害。然后,10uF的电容用于滤波,平滑脉动直流电,提供更稳定的电压。 右侧的4007二极管、4700pF电容和82KΩ电阻构成了高压吸收电路,主要任务是在开关管13003关闭时吸收线圈的感应电压,防止电压冲击到开关管,导致其损坏。13003是一种开关管,具体型号为MJE13003,其耐压400V,集电极最大电流1.5A,最大集电极功耗14W,用于控制原边绕组与电源之间的通断,实现能量转换。 电源的工作方式是通过原边绕组的不断通断,在开关变压器中产生变化的磁场,这个磁场会在次级绕组中感应出电压。由于电路图未明确同名端,无法确定是正激式还是反激式设计,但从结构推测可能是反激式。启动电阻510KΩ为开关管13003提供启动电流,使其开始工作。 13003下方的10Ω电阻作为电流取样电阻,监测并控制通过开关管的电流,防止过载。当电流超过设定阈值时,三极管C945导通,降低开关管的基极电压,从而限制电流,形成恒流保护机制。取样绕组产生的电压经过整流和滤波,形成取样电压,通过稳压二极管和反馈电路来控制输出电压,实现稳压功能。 次级绕组的电压通过二极管RF93整流,220uF电容滤波后,输出稳定的6V电压,用于手机充电。二极管RF93可能是一个高速恢复二极管,适应开关电源的高工作频率。整个系统需要使用高频开关变压器,铁心通常采用高频铁氧体磁芯,以减少涡流损失,提高效率。 手机充电器的电源变换电路通过半波整流、滤波、高压吸收、电流控制、反馈调节以及次级绕组的整流滤波等步骤,将交流电转换为稳定直流电,供给手机充电,同时确保电路的安全性和稳定性。
2025-04-13 15:55:56 69KB 电源技术
1
本文介绍一种太阳能手机充电器,它使用太阳能电池板,经电路进行直流电压变换后给手机电池充电,并能在电池充电完成后自动停止充电,解决了外出时手机电池突然没有电且充电器不在身边或找不到可以充电的地方,影响了手机的正常使用。   工作原理   太阳能电池在使用时由于太阳光的变化较大,其内阻又比较高,因此输出电压不稳定,输出电流也小,这就需要用一个直流变换电路变换电压后供手机电池充电,直流变换电路见图1,它是单管直流变换电路,采用单端反激式变换器电路的形式。当开关管VT1导通时,高频变压器T1初级线圈NP的感应电压为1正2负,次级线圈Ns为5正6负,整流二极管VD1处于截止状态,这时高频变压器T1通 太阳能手机充电器是一种便携式的解决方案,它利用太阳能电池板将太阳光转化为电能,然后通过特定的电路转换成适合手机电池的电压,为手机提供电力。这种充电器设计的目标是解决户外活动或紧急情况下手机电池电量耗尽而无法充电的问题。 工作原理的关键在于直流变换电路,通常采用的是单管直流变换电路,特别是单端反激式变换器电路。这种电路的核心是开关管VT1,它与高频变压器T1、电阻R1、R3、电容C2等共同构成自激式振荡电路。太阳能电池板的输出会经过这个电路调整,以适应手机电池的充电需求。 当开关管VT1导通时,高频变压器T1的初级线圈NP感应出正电压,次级线圈Ns则感应出负电压,此时整流二极管VD1截止,变压器通过初级线圈Np储存能量。而当VT1截止,次级线圈Ns的电压反转,通过VD1整流并经电容C3滤波,向负载(手机电池)提供稳定的直流电压进行充电。 电路的稳定性和控制主要依赖于开关管VT1的状态变化。VT1的基极通过R1、R3、C2等元件受到控制,形成正反馈循环,使得VT1能够在饱和和截止状态之间反复切换,从而维持电路的持续振荡。在这个过程中,VT1的集电极电流会随着基极电位的改变而变化,进而影响变压器T1的能量释放和充电过程。 为了防止手机电池过充,电路中还设有限压电路。例如,通过R5、R6、VD2、VT2等元件,当电池电压达到4.2V(对于3.6V电池的充电限制电压)时,VT2导通,减少VT1的基极电流,从而限制输出电压,确保电池安全充电。 在实际制作中,元器件的选择和安装调试至关重要。例如,VT1应选用Icm大于0.5A,hFE在50-100之间的三极管,如2SC2500或2SC1008。高频变压器T1需自制,使用E16铁氧体磁芯,并根据特定参数进行绕线。太阳能电池板的数量和连接方式应根据实际可获得的电池板规格来决定,以保证输入电压满足电路需求。 太阳能手机充电器的工作原理涉及了太阳能电池板的特性、直流变换电路的设计以及电池保护机制。通过理解和掌握这些知识点,我们可以自行制作并优化这样的充电器,使其在户外环境中发挥出最佳性能。
2025-04-13 15:07:19 88KB 电源技术
1
基于YOLOv8与DEEPSort技术的多目标检测跟踪系统:包含56组visdrone测试视频、pyqt5界面设计与详细环境部署及算法原理介绍,基于YOLOv8和DEEPSort的多目标检测跟踪系统:深入探索环境部署与算法原理,附带56组visdrone测试视频的界面设计实战教程。,五、基于YOLOv8和DEEPSort的多目标检测跟踪系统 1.带56组测试视频,使用visdrone数据集。 2.pyqt5设计的界面。 3.提供详细的环境部署说明和算法原理介绍。 ,基于YOLOv8;DEEPSort多目标检测跟踪系统;56组测试视频;visdrone数据集;pyqt5界面设计;环境部署说明;算法原理介绍,基于YOLOv8和DEEPSort的56组视频多目标检测跟踪系统
2025-04-13 14:25:06 3.27MB
1
"基于Comsol仿真的直流电压环境下GIS盆式绝缘子性能分析与优化","直流电压环境下GIS盆式绝缘子Comsol仿真技术研究与应用",直流电压下 GIS 盆式绝缘子Comsol仿真 ,直流电压; GIS盆式绝缘子; Comsol仿真; 绝缘性能,"Comsol仿真直流电压下GIS盆式绝缘子" 随着电力系统电压等级的不断提高,气体绝缘开关设备(GIS)作为高压开关设备的一种重要形式,其性能的稳定性直接影响整个电力系统的安全运行。在GIS中,盆式绝缘子起着至关重要的作用,它不仅支撑导电部分,还承担着电场的均匀分布,确保了设备的绝缘性能。然而,在直流电压环境下,盆式绝缘子的性能会受到多种因素的影响,其中包括电场强度、温度分布、绝缘材料特性等,因此对于其性能的分析与优化成为了电力工程领域中的一个重要课题。 基于此,Comsol仿真技术成为研究GIS盆式绝缘子性能的重要工具。Comsol Multiphysics是一款多物理场耦合分析软件,它能够模拟和分析在直流电压作用下盆式绝缘子的物理场,包括电场、磁场、温度场等。通过建立精确的三维模型,并设置合适的边界条件与材料属性,仿真可以模拟实际工况下绝缘子的性能表现,并可以针对不同的设计参数进行优化,以改善其绝缘性能。 在直流电压环境下,GIS盆式绝缘子的仿真研究通常关注以下几个方面: 1. 电场分布:分析绝缘子表面以及内部的电场强度分布,确保其不超过材料的击穿强度,从而预防电晕放电和电弧产生。 2. 温度场分析:评估绝缘子在直流电压作用下的热效应,包括损耗产生的热量和散热条件,以确保绝缘子不会因温度过高而损坏。 3. 绝缘材料选择:不同绝缘材料在直流电压下的老化特性不同,仿真可以帮助选择更适合的绝缘材料,提高绝缘子的使用寿命。 4. 结构优化:通过改变绝缘子的几何结构和安装方式,分析对电场和温度分布的影响,以达到最佳的绝缘性能。 5. 系统集成:将盆式绝缘子仿真结果与其他GIS组件的仿真相结合,评估整个GIS系统在直流电压作用下的性能表现。 通过上述的研究和分析,电力工程师可以对GIS盆式绝缘子的设计进行优化,提高其在直流电压环境下的性能,进而提升整个电力系统的稳定性和可靠性。在这一过程中,Comsol仿真软件为电力系统的研发和设计提供了强有力的工具,帮助工程师在实际制造和应用之前,对产品性能进行预测和优化。 另外,通过上述的仿真分析和优化,还可以指导实际生产过程,降低生产成本和提高生产效率。同时,利用仿真技术,可以在产品设计阶段发现潜在的设计缺陷,减少后期维护和修复的次数,从而降低整个产品的生命周期成本。 在工程实践中,GIS盆式绝缘子的设计和应用是一个复杂的系统工程,涉及到电气工程、材料科学、热力学等多个学科领域。因此,对其性能的研究和优化是一个跨学科的协作过程,需要不同领域的专家共同参与,以实现最优的设计方案。随着仿真技术的不断进步,未来的电力系统将更加安全可靠,而Comsol仿真技术将在其中发挥不可替代的作用。
2025-04-13 11:27:21 555KB xhtml
1
基于YOLOv5技术的实时作弊行为检测,Python+PyCharm操作平台与图形界面简洁易用,基于YOLOv5的实时作弊行为检测系统的图形化界面与Python实现,基于YOLOv5的作弊行为检测系统,Python和pycharm实现,可实时检测,有方便操作的图形化界面 ,基于YOLOv5的作弊行为检测系统; 实时检测; Python; pycharm实现; 图形化界面,基于YOLOv5的实时作弊检测系统:Python与PyCharm的图形化界面实现 YOLOv5是一种先进的目标检测算法,它能够在实时场景中准确识别和定位图像中的目标物体。基于YOLOv5技术开发的实时作弊行为检测系统,通过在Python编程语言环境下结合PyCharm集成开发环境,成功实现了图形用户界面(GUI)的简洁易用。该系统允许用户通过直观的界面进行实时监测,大幅提升操作便利性和效率。此外,系统的实现依赖于强大的Python编程能力,通过编写高效的代码,使得系统的运行稳定,响应速度快。 系统的图形化界面设计得既美观又实用,用户可以轻松地进行作弊行为的实时检测,而不必深入了解背后的复杂技术。此外,系统还能够支持多种环境下的应用,无论是在考场监控还是在网络教育等领域,都能发挥其功效。通过优化算法和界面设计,该系统成为了作弊行为检测领域的一项创新技术,为教育、考试等场景提供了一种有效的技术手段。 YOLOv5算法的核心优势在于它的速度和准确性。YOLOv5的模型采用了卷积神经网络(CNN)架构,能够快速处理图像数据,并通过训练学习到大量作弊行为的特征。在检测过程中,系统能够实时对视频帧进行分析,一旦识别到潜在的作弊行为,便会立即发出警报,从而有效地遏制作弊行为的发生。同时,系统还具有良好的自适应能力,能够适应不同的检测环境和条件。 在技术实现方面,开发者需要具备深厚的Python编程基础,熟悉机器学习和深度学习相关知识,以及对YOLOv5模型的深入了解。此外,开发过程中还需要进行大量的数据收集和预处理,模型训练和调优,以及界面设计和功能测试等。在系统的构建中,每个环节都至关重要,任何细节的失误都可能影响到最终系统的性能和用户体验。 在未来的开发中,该系统有望进一步完善,比如引入更多种类的作弊行为特征,提升模型的泛化能力,优化用户交互流程,提高系统的稳定性和准确性。同时,随着人工智能技术的不断进步,系统还可以融合更多创新的技术,比如使用增强学习、自然语言处理等技术,来提升系统的人机交互能力,使其更加智能化、自动化。 此外,文档资料提供了系统开发的技术分析和实现细节,内容涵盖了技术原理、模型预测、控制策略以及技术探索等多个方面。开发者可以从这些文档中获得系统的理论支持和实践经验,为系统的优化和升级提供参考。 系统的成功开发和应用,不仅在作弊行为检测领域具有重要的实践意义,也展示了人工智能技术在教育技术领域的广阔应用前景。它为教育公平、考试公正提供了强有力的技术支撑,有助于打造一个更加公平、透明的教育和考试环境。随着技术的进一步发展,可以预见,类似系统将会得到更加广泛的应用,为教育行业的发展贡献更多力量。
2025-04-13 00:15:24 12.19MB 开发语言
1