针对维吾尔文手写体文本中行分割问题,本文基于连通域大小将图像中文字分为三类,提出了自适应涂抹细化算法,对主体文本行进行定位;并对第三类连通域中相邻两文本行间粘连的字符进行切割;此外,利用重心范围内的邻域搜索算法,解决了剩余笔画的文本行归附问题。实验结果表明,本文方法与常见的水平投影法,分段投影法,及涂抹方法相比具有更好的分割效果。
1
一、课题题目:基于MATLAB的手写数字识别系统 二、课题介绍 手写数字识别是模式识别领域的一个重要分支,它研究的核心问题是:如何利用计算机自动识别人手写在纸张上的阿拉伯数字。手写体数字识别问题,简而言之就是识别出10个阿拉伯数字,由于数字的清晰程度或者是个人的写字习惯抑或是其他,往往手写体数字的性状、大小、深浅、位置会不大一样。手写体识别一般包括3个阶段:预处理、特征提取、分类识别。  手写数字识别前景广阔,广泛应用于表格中数字的识别、汽车牌照的数字自动识别和成绩单的识别等。实现数字的自动识别能够给人们的工作和生活带来很大的方便。对于该领域的研究具有重要的理论价值:  一方面,阿拉伯数字是唯一的被世界各国通用的符号,对手写数字识别的研究与文化背景无关,这样就为各国、各地区的研究工作者提供了一个自由平等的舞台,大家可以在这一领域施展才智,各抒己见。  另一方面,由于数字识别的类别数较少(只有0到9十个类别),有助于做深入分析及验证一些新的理论。这方面最明显的例子就是人工神经网络,相当一部分的人工神经网络模型都以手写数字识别作为具体的实验平台,验证理论的有效性,评价各种方法的优缺点。  数字识别的算法较多,当前运用较好的主流算法以统计、聚类和分类算法为主,如Bagging算法、支持向量机算法、神经网络等。手写数字识别难度在于:一、数字相似性大,但字形相差不大;二、数字虽然只有10种,但笔划简单,同一个数字写法差别大;三、手写数字存在断笔和毛刺,对识别造成影响。本文选择分类算法中的决策树算法、支持向量机算法、神经网络对MNIST数据集进行数字识别,并对分类效果进行比较分析。
2021-03-01 18:05:42 544KB matlab 手写数字识别 GUI界面
1
pytorch 手写体代码和原文件 mnist.pkl.gz
2021-02-20 19:07:13 15.4MB pytorch
手写体识别(数据集+代码+结果),可应用于kaggle
2021-02-08 21:03:37 15.98MB python 机器学习 手写识别
1
手写体识别案例数据集,包含测试集和训练集,CSV格式
2021-02-08 19:02:48 15.34MB 深度学习
1
手写体扫描件,集中公式,方便查阅
2021-01-28 04:55:35 7.28MB 机器学习
1
手写体识别数据和原码,主要适用python中的numpy库,完成多层感知机,CNN,这两种方式对mnist数据集的识别
2021-01-28 02:27:57 24.68MB CNN 多层感知机 深度学习 手写体识别
1
博客:https://blog.csdn.net/weixin_45775701/article/details/109446515
2020-11-20 12:22:11 53.54MB tensorflow mnist python
1
本资源为纯python实现mnist手写体识别的代码,为作者本人所写,供深度学习初学者共同交流探讨,欢迎二次创作,网络为三层,可达到97%上准确率,模型可以选择多种训练方式,学习率,激活函数,损失函数等我都写了相关函数,可以选择,模型也可以自由变换,只需要改一下前面常量参数值就行。升级版本正在打包测试过程中,完成后可以自行选择batch—size大小等,具体介绍可以看我置顶博文介绍
1
手写体识别数据!应用于pytorch版本的,pytorch版本1.31,代码在博客中,有问题欢迎留言 python版本3.74,代码软件pycharm
2020-04-06 03:17:58 33.2MB mnist 手写体识别 cnn pytorch
1