<html dir="ltr"><head><title></title></head><body>考虑实际决策环境的不确定性和复杂性, 提出一种具有多目标、多指标、多局势的灰靶决策模型. 首先, 将各局势在相应目标下的各指标集结为目标综合效果评价值, 从而简化复杂的多层决策问题; 然后, 集成各局势到正负靶心的空间投影距离, 提出一种新的综合靶心距, 并以综合靶心距最小化准则为目标函数构建非线性优化模型来求解最优的目标权重; 最后, 以某种产品的零部件绿色供应商的选择为例, 验证了基于正负靶心的多目标灰靶决策模型的有效性和实用性. </body></html>
1
行业分类-电信-在电信系统中估计小区间干扰的方法.rar
基于负荷区间电价激励的电动汽车充放电调度控制策略.pdf
Plot data and a linear regression model fit. There are a number of mutually exclusive options for estimating the regression model. See the tutorial for more information.
2021-09-02 10:02:28 163B 数据分析
1
行业-电子政务-热电联产机组以热定电下可行运行区间的计算系统及方法.zip
区间隧道模型
2021-08-31 18:04:20 66.75MB 隧道模型
1
行业-电子政务-基于相关向量机的高精度风电场功率区间预测方法.zip
从3G-5G小区间干扰抑制技术综述.pdf
2021-08-31 09:01:41 502KB 干扰抑制技术
有色金属行业周报:业绩预告利润普遍大增,估值进入合理区间.pdf
2021-08-26 09:07:06 1.05MB 有色金属 行业分析 数据报告 行业报告
Abstract—Wind speed interval prediction plays an important role in wind power generation. In this article, a new interval construction model based on error prediction is proposed. The variational mode decomposition is used to decompose the complex wind speed time series into simplified modes. Two types of GRU models are built for wind speed prediction and error prediction. Prediction error for each mode is given a weight and accumulated to obtain the width of the prediction interval. The particle swarm optimization algorithm is applied to search for the optimal weights of the prediction errors. Experiments considering eight cases from two wind fields are conducted by using methods of interval construction in the literature for comparison with the proposed model. The result shows that the proposed model can obtain prediction intervals with higher quality.
2021-08-25 17:05:36 2.55MB 风速预测
1