堆叠(堆叠概括) 总览 简单实用的堆叠库,用Python编写。 用户可以使用scikit-learn,XGboost和Keras的模型进行堆叠。 作为该库的功能,训练后可以保存所有失叠的预测以供进一步分析。 描述 (有时被称为堆叠泛化)涉及训练学习算法的其他几个学习算法的预测结合起来。 基本思想是使用一组基础分类器,然后使用另一个分类器组合其预测,以减少泛化误差。 对于理解堆栈和集成学习非常有帮助。 用法 请参阅工作示例: 要运行这些示例,只需运行sh run.sh 注意: 在数据/输入下设置训练和测试数据集 从原始数据集创建的要素必须位于数据/输出/要素下 堆栈模型在scripts文件夹下的scripts.py中定义 需要在该脚本中定义创建的功能 只需运行sh run.sh ( python scripts/XXX.py )。 详细用法 设置火车数据集及其目标数据和测试数据集。 FEATURE_LIST_stage1 = { 'train' :( INPUT_PATH + 'train.csv'
2021-11-24 09:51:14 2.16MB scikit-learn prediction xgboost ensemble
1
matlab如何敲代码介绍 带我去股票市场预测! 本文探讨了一种称为递归神经网络(RNN)的机器学习算法,这是一种用于连续数据模式识别的常见深度学习技术。 递归神经网络考虑了数据随时间的变化,通常用于时间序列数据(股票价格,传感器读数等)。 递归神经网络也可以用于视频分析。 您将获得一个包含Google Inc.股票价格的数据集,用于训练模型和预测未来股票价格,如下所示。 为了改进预测,您可以针对同一部门,地区,子公司等更多公司的股票价格数据训练此模型。对网络,新闻和社交媒体的情绪分析在您的预测中也可能会有用。 开源开发人员Sentdex为创建了一个非常有用的工具。 递归神经网络 当我们尝试对机器学习进行建模以使其表现得像大脑时,权重代表了颞叶中的长期记忆。 模式和图像的识别由枕叶完成,其工作原理与卷积神经网络相似。 循环神经网络就像短期记忆一样,可以记住最近的记忆,并且可以创建类似于额叶的上下文。 顶叶负责像Botlzman Machines这样的空间识别。 递归神经网络通过时间将神经元连接到其自身,从而创建一个反馈循环,从而保留了短期和长期记忆意识。 下图描述了描述RNN的传统方法
2021-11-23 15:46:24 20.01MB 系统开源
1
heart_disease_prediction 心脏病UCI数据集 该实验只是根据心脏病的缺席情况简单地预测心脏病的存在。 1.关于数据集: 该数据集在Kaggle( )上提供。 并且可以从UCI机器学习存储库( )中获得。 数据包含总共14个属性,如下所示。 属性说明 年龄:岁 性别:性别(1 =男性; 0 =女性) cp:胸痛类型 值1:典型心绞痛值2:非典型心绞痛值3:非心绞痛2值:无症状 trestbps:静息血压(入院时以毫米汞柱为单位) 胆汁:血清胆汁,mg / dl fbs :(空腹血糖> 120 mg / dl)(1 =正确; 0 =错误) restecg:静息心电图结果 值0:正常值1:ST-T波异常(T波倒置和/或ST升高或降低> 0.05 mV)值2:按照Estes的标准显示可能或确定的左心室肥大 丘脑:达到最大心率 exang:运动引起的心绞痛(
2021-11-21 10:39:53 130KB JupyterNotebook
1
图书价格预测
2021-11-20 19:22:25 3.41MB JupyterNotebook
1
Churn-Prediction-of-Bank-Customers:预测银行客户流失
2021-11-20 14:23:13 286KB JupyterNotebook
1
基于CNN预测的可逆数据隐藏 作者: 胡润文和项世军 暨南大学信息科学与技术学院/网络安全学院,广州 描述: 该版本只能通过使用建议的基于CNN的具有扩展嵌入和直方图偏移的预测器(CNNP)来计算图像的PSNR。 工作环境是Windows 10,Python 3.7,PyTorch 1.6.0和MATLAB 2019a。 这项工作基于以下论文: R. Hu和S. Xiang,“基于CNN预测的可逆数据隐藏”,在IEEE信号处理快报中,第1卷。 28,pp.464-468,2021,doi:10.1109 / LSP.2021.3059202。 资料夹说明: “ standard_test_images”:此文件夹包含本文中使用的四个标准图像。 其他图像来自ImageNet。 “模型”:此文件夹包含建议的基于CNN的预测变量。 “ model_parameter”:此文件夹包含建议的
2021-11-19 22:28:28 1KB
1
一篇slam相关论文,结合了深度学习。用CNN单帧预测深度,可以解决单目slam中尺度不确定性、纯旋转、低纹理区域等问题。
2021-11-18 10:21:55 8.17MB paper slam 深度学习
1
预测死亡事件的12个临床特征。 heart_failure_clinical_records_dataset.csv
2021-11-16 19:36:49 4KB 数据集
1
matlab预测电池寿命程序代码循环寿命预测使用机器学习 这项研究基于斯坦福大学学生的工作,题为“容量退化前电池循环寿命的数据驱动预测”。 他们创建了一个数据集,这是同类中最大的开源,并使用机器学习来预测锂离子电池寿命。 我研究的目的是首先重新创建他们的数据,然后最终创建我自己的模型,以与使用相同数据集的该项目的准确性相媲美。 本研究中使用的数据集可在 . results_recreation.m 目的:在matlab上加载三批数据并组合成一个大数据集。 改变循环寿命的一些不正确的值。 然后,代码提取并处理相关数据以创建运行弹性网络模型所需的 csv 文件。 需要:Matlab,三个数据集 典型的运行时间是几分钟 方差_数据.csv 目的:包含所有 124 个电池的循环寿命的方差数据的 csv 文件。 该文件通过为每列提供标题而略有改动。 运行python程序时需要这样做。 要求:无 Data_recreation.ipynb 目的:为方差、循环寿命数据集生成弹性网络。 此代码将 csvfile 调用到数据集中,并准备要放入 Elastic net 的数据。 数据按照与斯坦福论文相同的
2021-11-16 14:46:39 28KB 系统开源
1
脑年龄预测 最后一年的项目-深度学习CNN预测大脑年龄
2021-11-13 10:43:43 138KB Python
1